Gradient-Based Electromagnetic Inversion for Metasurface Design Using Circuit Models

被引:6
|
作者
Narendra, Chaitanya [1 ]
Brown, Trevor [1 ]
Mojabi, Puyan [1 ]
机构
[1] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Metasurfaces; Integrated circuit modeling; Admittance; Transmission line matrix methods; Electromagnetics; Impedance; Substrates; Electromagnetic inversion; inverse problems; metasurface design; microwave circuits; pattern synthesis; EQUIVALENCE PRINCIPLE; HUYGENS METASURFACES; FIELD; RECONSTRUCTION; SCATTERING; SURFACES; CURRENTS; ANTENNA;
D O I
10.1109/TAP.2021.3118811
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A gradient-based optimization algorithm that is capable of directly designing a metasurface at the circuit parameter level for a desired field (amplitude and phase) pattern or a desired power (phaseless) pattern on some region of interest (ROI) external to the metasurface boundary is presented. Specifically, the inversion algorithm designs the microwave admittance profile of each subwavelength element of the metasurface when a three-layer admittance model is assumed. To this end, a forward model that maps the admittance profile of each layer of the metasurface to the desired field on the ROI is developed. Then, for the inverse design problem, a data misfit cost functional is defined and minimized over the unknown admittance profile using analytically derived gradients and step lengths. The developed inversion algorithm is then utilized to design metasurfaces capable of beam forming in the far-field zone.
引用
收藏
页码:2046 / 2058
页数:13
相关论文
共 50 条
  • [31] A Gradient-Based Approach to Interpreting Visual Encoding Models
    Chatterjee, Subhrasankar
    Samanta, Debasis
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT I, 2024, 2009 : 331 - 342
  • [32] MATLAB simulation of gradient-based neural network for Online matrix inversion
    Zhang, Yunong
    Chen, Ke
    Ma, Weimu
    Li, Xiao-Dong
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2007, 4682 : 98 - 109
  • [33] Revisit the analog computer and gradient-based neural system for matrix inversion
    Zhang, YO
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 1411 - 1416
  • [34] Attitude Control System Design for Small Satellites Using Gradient-Based Methods
    Chelaru, Teodor-Viorel
    Stoica, Adrian-Mihail
    Chelaru, Adrian
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST 2013), 2013, : 505 - 510
  • [35] A Realtime Lane Detection System Design using Gradient-based Hough Transform
    Kim Y.-J.
    Gong M.-S.
    Park T.-G.
    Transactions of the Korean Institute of Electrical Engineers, 2023, 72 (06): : 770 - 777
  • [36] Gradient-based multifidelity optimisation for aircraft design using Bayesian model calibration
    March, A.
    Willcox, K.
    Wang, Q.
    AERONAUTICAL JOURNAL, 2011, 115 (1174): : 729 - 738
  • [37] A Generalized Framework for Concentric Tube Robot Design Using Gradient-Based Optimization
    Lin, Jui-Te
    Girerd, Cedric
    Yan, Jiayao
    Hwang, John T.
    Morimoto, Tania K.
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (06) : 3774 - 3791
  • [38] Deep Deterministic Policy Gradient-based intelligent control scheme design for DC-DC circuit
    Zhang, Ligong
    Zhu, Xinhui
    Bai, Chenyang
    Li, Junshan
    2021 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2021, : 141 - 146
  • [39] Gradient-based and multi-innovation gradient-based iterative algorithms for single-diode photovoltaic cell models
    Wang, Junwei
    Ji, Yan
    Liu, Haibo
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1166 - 1171
  • [40] GRADIENT-BASED OPTIMIZATION OF SPACECRAFT AND AIRCRAFT THERMAL DESIGN
    Maciulis, Laurynas
    Belevicius, Rimantas
    AVIATION, 2020, 24 (03) : 105 - 116