Dual Attention Transfer in Session-based Recommendation with Multi-dimensional Integration

被引:33
|
作者
Chen, Chen [1 ]
Guo, Jie [1 ]
Song, Bin [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross Domain Recommendation; Graph Neural Networks; Session-based Recommendation;
D O I
10.1145/3404835.3462866
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Session-based recommendation (SBR) is widely used in e-commerce to predict the anonymous user's next click action according to a short sequence. Many previous studies have shown the potential advantages of applying Graph Neural Networks (GNN) to SBR tasks. However, the existing SBR models using GNN to solve user preference problems are only based on one single dataset to obtain one recommendation model during training. While the single dataset has the problems including the excessive sparse data source and the long-distance relationship of items. Therefore, introducing the dual transfer, which can enrich the data source, to SBR is absolutely necessary. To this end, a new method is proposed in this paper, which is called dual attention transfer based on multi-dimensional integration (DAT-MDI): (i) DAT uses a potential mapping method based on a slot attention mechanism to extract the user's representation information in different sessions between multiple domains. (ii) MDI combines the graph neural network for the graphs (session graph and global graph) and the gate recurrent unit (GRU) for the sequence to learn the item representation in each session. Then the multi-level session representation are combined by a soft-attention mechanism. We do a variety of experiments on four benchmark datasets which have shown that the superiority of the DAT-MDI model over the state-of-the-art methods.
引用
收藏
页码:869 / 878
页数:10
相关论文
共 50 条
  • [41] Session-based recommendation with time-aware neural attention network
    Wang, Ruiqin
    Lou, Jungang
    Jiang, Yunliang
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [42] Leveraging neighborhood session information with dual attentive neural network for session-based recommendation
    Wu, Yuan
    Gou, Jin
    NEUROCOMPUTING, 2021, 439 (439) : 234 - 242
  • [43] MVC-HGAT: multi-view contrastive hypergraph attention network for session-based recommendation
    Yang, Fan
    Peng, Dunlu
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [44] Session-based Recommendation with Local Invariance
    Chen, Tianwen
    Wong, Raymond Chi-Wing
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 994 - 999
  • [45] Contrastive Learning for Session-Based Recommendation
    Chen, Yan
    Qian, Wanhui
    Liu, Dongqin
    Su, Yipeng
    Zhou, Yan
    Han, Jizhong
    Li, Ruixuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 358 - 369
  • [46] Evaluation of session-based recommendation algorithms
    Malte Ludewig
    Dietmar Jannach
    User Modeling and User-Adapted Interaction, 2018, 28 : 331 - 390
  • [47] Evaluation of session-based recommendation algorithms
    Ludewig, Malte
    Jannach, Dietmar
    USER MODELING AND USER-ADAPTED INTERACTION, 2018, 28 (4-5) : 331 - 390
  • [48] Enhanced Multi-Head Self-Attention Graph Neural Networks for Session-based Recommendation
    Pan, Wenhao
    Yang, Kai
    ENGINEERING LETTERS, 2022, 30 (01) : 37 - 44
  • [49] Category Enhanced Dual View Contrastive Learning for Session-Based Recommendation
    Shi, Xingfan
    Shi, Yuliang
    Wang, Jihu
    Sun, Hongfeng
    Liu, Hui
    Wang, Xinjun
    Chen, Zhiyong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 285 - 297
  • [50] Dual Part-pooling Attentive Networks for Session-based Recommendation
    Zhang, Xiaokun
    Lin, Hongfei
    Yang, Liang
    Xu, Bo
    Diao, Yufeng
    Ren, Lu
    NEUROCOMPUTING, 2021, 440 : 89 - 100