Studies of interaction between bitumen and thermochemical fluid (TCF): Insights from experiment and molecular dynamics simulations

被引:11
|
作者
Alade, Olalekan S. [1 ]
Abdel-Azeim, Safwat [2 ]
Mahmoud, Mohamed [1 ]
Hamdy, Mohamed [3 ]
Al-Shehri, D. A. [1 ,2 ,3 ]
Mokheimer, Esmail [3 ]
机构
[1] King Fahd Univ Minerals & Petr, Coll Petr & Geosci, Dept Petr Engn, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr, Coll Petr Engn & Geosci, Ctr Integrat Petr Res CIPR, Dhahran, Saudi Arabia
[3] King Fahd Univ Minerals & Petr, Coll Sci, Dept Mech Engn, Dhahran, Saudi Arabia
关键词
Bitumen; Thermal stimulation; Thermal analysis; In-situ combustion; Hybrid system; OIL-WATER INTERFACE; NUMERICAL-SIMULATION; CRUDE-OIL; ASPHALTENES; AGGREGATION; VISCOSITY; SAND; COAL;
D O I
10.1016/j.apsusc.2020.146942
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal enhanced oil recovery generally involves injection of steam into the reservoir or insitu heat propagation to reduce the viscosity of heavy oil. However, certain shortcomings, which are associated with steam injection, have paved way for finding an alternative method for insitu heat and pressure generation such as thermochemical fluid injection. The thermochemical fluid injection method offers several potential advantages including reduced heat loss, higher heat transfer efficiency, and negligible emission of CO2 compared to conventional steam injection. In this article, a deeper understanding of the process using the molecular dynamics simulations coupled with the experiment are presented. Guided by experimental information obtained from Saturates, Aromatics, Resin and Asphaltene fractions, total acid number, and density of bitumen sample, a molecular model of bitumen was built and validated. Subsequently, supported with the thermodynamic data obtained from the thermochemical reaction vis. enthalpy (Delta H) and order of reaction (n), Molecular dynamics simulations were used to examine the bitumen-thermochemical fluid interface, and the possible molecular interactions that could be involved between the bitumen matrix components and the thermochemical fluid. The thermochemical fluid reaction could generate sufficient temperature, typically, approximate to 170 degrees C and pressure approximate to 1600 Psi. The reaction was first order (n = 1) with Delta H = -370 KJ/mol, and the reaction Ea approximate to 35.5 kJ mol(-1). Ultimately, molecular dynamics simulations gave detailed insights into the molecular interactions that could be established at the bitumen-thermochemical fluid interface. Our results put in evidence the changes of bitumen matrix upon the injection of thermochemical fluid. Indeed, molecular dynamics results show that the insitu heat released from the thermochemical reactions induces a homogeneous texture of the bitumen matrix via disturbing the large aggregates of the heavy bitumen components such asphaltene, and resin. The formation of salt resulted in a stronger interaction of salt-acids type between the two phases, which leads to further stabilization of the water-phase inside the bitumen matrix and prevent its collapse. Furthermore, the insitu formation of N-2 gas and its diffusion through bitumen matrix softens its texture and lead to disturbing of the tight interaction between the bitumen matrix components. As, the temperature increases the kinetic energy of N-2 gas increases and make it more efficient to decrease its viscosity and hence its mobility. This phenomenon has also been corroborated through the thermogravimetric analysis and the scanning electron microscopy, which revealed improved thermal decomposition performance due to reactivity and/or interfacial interactions between thermochemical fluid and bitumen matrix.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Interaction of Flaviviruses with Reproduction Inhibitors Binding in β-OG Pocket: Insights from Molecular Dynamics Simulations
    Dueva, Evgenia V.
    Osolodkin, Dmitry I.
    Kozlovskaya, Liubov I.
    Palyulin, Vladimir A.
    Pentkovski, Vladimir M.
    Zefirov, Nikolay S.
    MOLECULAR INFORMATICS, 2014, 33 (10) : 695 - 708
  • [22] Effect of cooling rates on aggregation interaction of asphaltene molecules: Insights from molecular dynamics simulations
    Yu, Pengfei
    Liu, Xueqian
    Zhu, Haoran
    Zhou, Yang
    Lai, Dehua
    Peng, Haoping
    Lei, Yun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 679
  • [23] Thermodynamics of fluid benzene from molecular dynamics simulations
    Friedrich, A
    Lustig, R
    JOURNAL OF MOLECULAR LIQUIDS, 2002, 98-9 : 241 - 259
  • [24] Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data
    Gonzalez-Andrade, Martin
    Rodriguez-Sotres, Rogelio
    Madariaga-Mazon, Abraham
    Rivera-Chavez, Jose
    Mata, Rachel
    Sosa-Peinado, Alejandro
    del Pozo-Yauner, Luis
    Arias-Olguin, Imilla I.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2016, 34 (01): : 78 - 91
  • [25] Insights from molecular dynamics simulations into the structure and dynamics of ITPA mutants
    Houndonougbo, Yao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [26] Molecular mechanisms of ABC transporters: insights from molecular dynamics simulations
    Oliveira, A. S. F.
    Baptista, A. M.
    Soares, C. M.
    FEBS JOURNAL, 2012, 279 : 253 - 253
  • [27] Molecular Dynamics Simulations of The Interaction Between Chitosan and Bacterial Membranes
    Zhu, Jing-yi
    Ma, Zhen-yu
    Xiao, Min
    Wang, Lu-shan
    Jiang, Xu-kai
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (08) : 1995 - 2005
  • [28] Insights from molecular dynamics simulations for computational protein design
    Childers, Matthew Carter
    Daggett, Valerie
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2017, 2 (01): : 9 - 33
  • [29] Insights into channel dysfunction from modelling and molecular dynamics simulations
    Musgaard, Maria
    Paramo, Teresa
    Domicevica, Laura
    Andersen, Ole Juul
    Biggin, Philip C.
    NEUROPHARMACOLOGY, 2018, 132 : 20 - 30
  • [30] Understanding creep in vitrimers: Insights from molecular dynamics simulations
    Singh, Gurmeet
    Varshney, Vikas
    Sundararaghavan, Veera
    POLYMER, 2024, 313