Stable Discretization of Time-Domain Solvers

被引:0
|
作者
Roth, Thomas E. [1 ,2 ]
Chew, Weng C. [2 ,3 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Univ Illinois, Urbana, IL 61801 USA
[3] Purdue Univ, W Lafayette, IN 47907 USA
关键词
D O I
10.1109/iceaa.2019.8879235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:1454 / 1454
页数:1
相关论文
共 50 条
  • [31] On stable subcell modeling in time-domain finite-element simulations
    Edelvik, F
    Weiland, T
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 3481 - 3484
  • [32] A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations
    Su, Zhuo
    Yang, Yongqin
    Long, Yunliang
    [J]. INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2013, 2013
  • [33] Weakly conditionally stable finite-difference time-domain method
    Chen, J.
    Wang, J.
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2010, 4 (11) : 1927 - 1936
  • [34] Stable and accurate solution of time-domain electric field integral equation
    Zhao, YW
    Nie, ZP
    Xu, JH
    Wu, SB
    [J]. 2004 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS AND ITS APPLICATIONS, PROCEEDINGS, 2004, : 1 - 4
  • [35] An Explicit Time-Domain Finite-Element Method that is Unconditionally Stable
    He, Qing
    Jiao, Dan
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2969 - 2972
  • [36] Time-Domain Multidimensional Deconvolution: A Physically Reliable and Stable Preconditioned Implementation
    Vargas, David
    Vasconcelos, Ivan
    Ravasi, Matteo
    Luiken, Nick
    [J]. REMOTE SENSING, 2021, 13 (18)
  • [37] An unconditionally stable scheme for the finite-difference time-domain method
    Chung, YS
    Sarkar, TK
    Jung, BH
    Salazar-Palma, M
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (03) : 697 - 704
  • [38] Time-domain boundedness of noise-to-state exponentially stable systems
    Fang, Zhou
    Gao, Chuanhou
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [39] Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations
    Monteghetti, Florian
    Matignon, Denis
    Piot, Estelle
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 393 - 426
  • [40] COMPUTATION OF ELECTROMAGNETIC SCATTERING AND RADIATION USING A TIME-DOMAIN FINITE-VOLUME DISCRETIZATION PROCEDURE
    MOHAMMADIAN, AH
    SHANKAR, V
    HALL, WF
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1991, 68 (1-3) : 175 - 196