Nonnegative matrix factorization in polynomial feature space

被引:62
|
作者
Buciu, Ioan [1 ,2 ]
Nikolaidis, Nikos [3 ]
Pitas, Ioannis [3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, GR-54006 Thessaloniki, Greece
[2] Univ Oradea, Fac Elect Engn & Informat Tech, Dept Elect, Oradea 410087, Romania
[3] Aristotle Univ Thessaloniki, Dept Informat, GR-54006 Thessaloniki, Greece
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2008年 / 19卷 / 06期
关键词
feature extraction; image representation; kernel theory; nonnegative matrix factorization (NMF); pattern recognition;
D O I
10.1109/TNN.2008.2000162
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plenty of methods have been proposed in order to discover latent variables (features) in data sets. Such approaches include the principal component analysis (PCA), independent component analysis (ICA), factor analysis (FA), etc., to mention only a few. A recently investigated approach to decompose a data set with a given dimensionality into a lower dimensional space is the so-called nonnegative matrix factorization (NMF). Its only requirement is that both decomposition factors are nonnegative. To approximate the original data, the minimization of the NMF objective function is performed in the Euclidean space, where the difference between the original data and the factors can be minimized by employing L-2-norm. In this paper, we propose a generalization of the NMF algorithm by translating the objective function into a Hilbert space (also called feature space) under nonnegativity constraints. With the help of kernel functions, we developed an approach that allows high-order dependencies between the basis images while keeping the nonnegativity constraints on both basis images and coefficients. Two practical applications, namely, facial expression and face recognition, show the potential of the proposed approach.
引用
收藏
页码:1090 / 1100
页数:11
相关论文
共 50 条
  • [21] Distribution Regularized Nonnegative Matrix Factorization for Transfer Visual Feature Learning
    Guo, Yuchen
    Ding, Guiguang
    Liu, Qiang
    ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, : 299 - 306
  • [22] Transfer Learning via Feature Selection Based Nonnegative Matrix Factorization
    Balasubramaniam, Thirunavukarasu
    Nayak, Richi
    Yuen, Chau
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2019, 2019, 11881 : 82 - 97
  • [23] Nonnegative matrix factorization of a correlation matrix
    Sonneveld, P.
    van Kan, J. J. I. M.
    Huang, X.
    Oosterlee, C. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 334 - 349
  • [24] NONNEGATIVE MATRIX FACTORIZATION WITH MATRIX EXPONENTIATION
    Lyu, Siwei
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2038 - 2041
  • [25] Nonnegative rank factorization of a nonnegative matrix A with A† A≥0
    Jain, SK
    Tynan, J
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01): : 83 - 95
  • [26] Nonnegative Matrix Factorization: When Data is not Nonnegative
    Wu, Siyuan
    Wang, Jim
    2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 227 - 231
  • [27] Quantized Nonnegative Matrix Factorization
    de Frein, Ruairi
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 377 - 382
  • [28] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510
  • [29] Elastic nonnegative matrix factorization
    Xiong, He
    Kong, Deguang
    PATTERN RECOGNITION, 2019, 90 : 464 - 475
  • [30] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278