LIMIT CYCLES OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS

被引:3
|
作者
Cardin, Pedro Toniol [1 ]
De Carvalho, Tiago [1 ]
Llibre, Jaume [2 ]
机构
[1] IBILCE UNESP, Dept Matemat, BR-15054000 Sao Paulo, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
基金
巴西圣保罗研究基金会;
关键词
Discontinuous piecewise linear differential systems; limit cycles; averaging theory; BIFURCATION;
D O I
10.1142/S0218127411030441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in R-n perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed.
引用
收藏
页码:3181 / 3194
页数:14
相关论文
共 50 条