LARGE DEGREES IN SCALE-FREE INHOMOGENEOUS RANDOM GRAPHS

被引:1
|
作者
Bhattacharjee, Chinmoy [1 ]
Schulte, Matthias [2 ]
机构
[1] Univ Luxembourg, Dept Math, Luxembourg, Luxembourg
[2] Hamburg Univ Technol, Inst Math, Hamburg, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2022年 / 32卷 / 01期
基金
瑞士国家科学基金会;
关键词
Random graphs; maximum degree; Poisson process convergence; Hill estimator; DISTANCE; GROWTH;
D O I
10.1214/21-AAP1693
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of scale-free inhomogeneous random graphs, which includes some long-range percolation models. We study the maximum degree in such graphs in a growing observation window and show that its limiting distribution is Frechet. We achieve this by proving convergence of the underlying point process of the degrees to a certain Poisson process. Estimating the index of the power-law tail for the typical degree distribution is an important question in statistics. We prove consistency of the Hill estimator for the inverse of the tail exponent of the typical degree distribution.
引用
收藏
页码:696 / 720
页数:25
相关论文
共 50 条
  • [41] Scalable generation of scale-free graphs
    Sanders, Peter
    Schulz, Christian
    INFORMATION PROCESSING LETTERS, 2016, 116 (07) : 489 - 491
  • [42] Scale-free graphs with many edges
    Stegehuis, Clara
    Zwart, Bert
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [43] Degree correlation in scale-free graphs
    Babak Fotouhi
    Michael G. Rabbat
    The European Physical Journal B, 2013, 86
  • [44] Scale-Free Graphs of Increasing Degree
    Cooper, Colin
    Pralat, Pawel
    RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (04) : 396 - 421
  • [45] Unimodular lattice triangulations as small-world and scale-free random graphs
    Krueger, B.
    Schmidt, E. M.
    Mecke, K.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [46] Scale-free properties of weighted random graphs: Minimum spanning trees and percolation
    Kalisky, T
    Sreenivasan, S
    Braunstein, LA
    Buldyrev, SV
    Havlin, S
    Stanley, HE
    SCIENCE OF COMPLEX NETWORKS: FROM BIOLOGY TO THE INTERNET AND WWW, 2005, 776 : 79 - 89
  • [47] The Diameter of a Scale-Free Random Graph
    Béla Bollobás*
    Oliver Riordan
    Combinatorica, 2004, 24 : 5 - 34
  • [48] The diameter of a scale-free random graph
    Bollobás, B
    Riordan, O
    COMBINATORICA, 2004, 24 (01) : 5 - 34
  • [49] Random models of scale-free networks
    Geng, XM
    Li, Q
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) : 554 - 562
  • [50] Clustering of random scale-free networks
    Colomer-de-Simon, Pol
    Boguna, Marian
    PHYSICAL REVIEW E, 2012, 86 (02)