Development and validation of a deep learning-based algorithm for drowsiness detection in facial photographs

被引:7
|
作者
Husain, Syed Sameed [1 ]
Mir, Junaid [2 ]
Anwar, Syed Muhammad [3 ]
Rafique, Waqas [4 ]
Ullah, Muhammad Obaid [2 ]
机构
[1] Univ Surrey, Ctr Vis, Speech, Signal Proc, Guildford, Surrey, England
[2] Univ Engn & Technol Taxila, Dept Elect Engn, Taxila 47050, Pakistan
[3] Univ Engn & Technol Taxila, Dept Comp Engn, Taxila 47050, Pakistan
[4] Univ Oxford, Dept Engn Sci, Oxford, England
关键词
Drowsiness detection; Fatigue detection; Deep convolutional neural network; Parametric aggregation; CNN; FATIGUE; NETWORK; EEG;
D O I
10.1007/s11042-022-12433-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Drowsiness is a feeling of sleepiness before the sleep onset and has severe implications from a safety perspective for the individuals involved in industrial activities, mining, and driving. The state-of-the-art computer vision (CV) based drowsiness detection methods generally utilize multiple deep convolutional neural networks (DCNN) without investigating deep feature aggregation techniques for the drowsiness detection task. More importantly, the reported results are mostly based on acted drowsy data, making the utilization of models trained on such data highly arguable for detecting drowsiness in real-life situations. Towards ameliorating this, we first present a comprehensive real drowsy data curated from 50 subjects, where subjects are labeled as fresh or drowsy. Further, four DCNN models: Xception, ResNet101, InceptionV4, and ResNext101, are trained on our dataset using transfer learning to select a baseline model for our drowsiness detection method. Moreover, an experimental study is performed using five different pooling methods: global max, global average, generalized mean, region of interest, and Weibull activation, to compute a robust and discriminative global descriptor. Our results reveal that the parametric Weibull activation pooling is the best suited for aggregating deep convolutional features. Additionally, a low complexity model based on the MobileNetV2 is proposed for a deployable drowsiness detection solution in mobile devices. The detection accuracy of 93.80% and 90.50% is achieved using our proposed Weibull-based ResNext101 and MobileNetV2 models, respectively. Moreover, our results show that the proposed non-invasive method outperforms the polysomnography signals-based invasive drowsiness detection approach.
引用
收藏
页码:20425 / 20441
页数:17
相关论文
共 50 条
  • [31] Deep learning-based algorithm for vehicle detection in intelligent transportation systems
    Qiu, Linrun
    Zhang, Dongbo
    Tian, Yuan
    Al-Nabhan, Najla
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (10): : 11083 - 11098
  • [32] Research on Deep Learning-based Object Detection Algorithm in Construction Sites
    Wang, Xianxing
    Cui, Wenhua
    Tao, Ye
    Shi, Tianwei
    ENGINEERING LETTERS, 2025, 33 (01) : 1 - 12
  • [33] Deep learning-based algorithm for multi defect detection in tunnel lining
    Song J.
    He L.
    Long H.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (06): : 1161 - 1173
  • [34] Deep learning-based algorithm for vehicle detection in intelligent transportation systems
    Linrun Qiu
    Dongbo Zhang
    Yuan Tian
    Najla Al-Nabhan
    The Journal of Supercomputing, 2021, 77 : 11083 - 11098
  • [35] A deep learning-based algorithm for detection of cortical arousal during sleep
    Li, Ao
    Chen, Siteng
    Quan, Stuart F.
    Powers, Linda S.
    Roveda, Janet M.
    SLEEP, 2020, 43 (12)
  • [36] A deep learning-based algorithm for pulmonary tuberculosis detection in chest radiography
    Chen, Chiu-Fan
    Hsu, Chun-Hsiang
    Jiang, You-Cheng
    Lin, Wen-Ren
    Hong, Wei-Cheng
    Chen, I. -Yuan
    Lin, Min-Hsi
    Chu, Kuo-An
    Lee, Chao-Hsien
    Lee, David Lin
    Chen, Po-Fan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [37] Research on Deep Learning-based Object Detection Algorithm in Construction Sites
    School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan
    114051, China
    Eng. Lett., 2025, 33 (01): : 1 - 12
  • [38] A deep transfer learning-based algorithm for concrete surface defect detection
    Jin, Zhisheng
    Wang, Lifeng
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [39] External validation of deep learning-based automated detection algorithm for chest radiograph: practical issues in outpatient clinic
    Lee, Da Eul
    Chae, Kum Ju
    Jin, Gong Yong
    Park, Seung Yong
    Jeong, Jae Seok
    Ahn, Su Yeon
    ACTA RADIOLOGICA, 2023, 64 (11) : 2898 - 2907
  • [40] Research on Driver Drowsiness Detection Method based on Deep Learning
    Puwei, Shi
    Ishii, Kazuo
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2024, 10 (04): : 313 - 317