Stereochemical errors and their implications for molecular dynamics simulations

被引:47
|
作者
Schreiner, Eduard [2 ]
Trabuco, Leonardo G. [3 ]
Freddolino, Peter L. [4 ]
Schulten, Klaus [1 ,2 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Heidelberg Univ, D-69120 Heidelberg, Germany
[4] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
来源
BMC BIOINFORMATICS | 2011年 / 12卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D-AMINO-ACID; AMIDE PEPTIDE-BOND; ISOMERIZATION; PROLINE; MECHANISM; DOMAIN;
D O I
10.1186/1471-2105-12-190
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Biological molecules are often asymmetric with respect to stereochemistry, and correct stereochemistry is essential to their function. Molecular dynamics simulations of biomolecules have increasingly become an integral part of biophysical research. However, stereochemical errors in biomolecular structures can have a dramatic impact on the results of simulations. Results: Here we illustrate the effects that chirality and peptide bond configuration flips may have on the secondary structure of proteins throughout a simulation. We also analyze the most common sources of stereochemical errors in biomolecular structures and present software tools to identify, correct, and prevent stereochemical errors in molecular dynamics simulations of biomolecules. Conclusions: Use of the tools presented here should become a standard step in the preparation of biomolecular simulations and in the generation of predicted structural models for proteins and nucleic acids.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Molecular dynamics simulations of polyisobutylene
    Ponce, Harrison
    Fuson, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [32] Molecular dynamics simulations of a helicase
    Cox, K
    Watson, T
    Soultanas, P
    Hirst, JD
    PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 52 (02): : 254 - 262
  • [33] Molecular dynamics simulations of xDNA
    School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
    不详
    Biopolymers, 2009, 5 (351-360)
  • [34] Molecular Dynamics Simulations of xDNA
    Varghese, Mathew K.
    Thomas, Renjith
    UnniKrishnan, N. V.
    Sudarsanakumar, C.
    BIOPOLYMERS, 2009, 91 (05) : 351 - 360
  • [35] Molecular dynamics simulations in photosynthesis
    Liguori, Nicoletta
    Croce, Roberta
    Marrink, Siewert J.
    Thallmair, Sebastian
    PHOTOSYNTHESIS RESEARCH, 2020, 144 (02) : 273 - 295
  • [36] Molecular dynamics simulations of metalloproteins
    Banci, L
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (01) : 143 - 149
  • [37] Molecular dynamics simulations of nucleation
    Toxvaerd, S
    MOLECULAR SIMULATION, 2004, 30 (2-3) : 179 - 182
  • [38] Molecular dynamics simulations of biomolecules
    Karplus, M
    McCammon, JA
    NATURE STRUCTURAL BIOLOGY, 2002, 9 (09) : 646 - 652
  • [39] Accelerating molecular dynamics Simulations
    Germann, Timothy C.
    Voter, Arthur F.
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 140 - 143
  • [40] Molecular dynamics simulations of xDNA
    Varghese, Mathew K.
    Thomas, Renjith
    Unnikrishnan, N.V.
    Sudarsanakumar, C.
    Biopolymers - Peptide Science Section, 2009, 91 (05): : 351 - 360