Entropy of a subalgebra and quantum estimation

被引:14
|
作者
Benatti, F
机构
[1] Dipartimento Fisica Teorica, Università di Trieste, I-34100 Trieste
关键词
D O I
10.1063/1.531682
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we compare the accessible information of quantum communication channels with the entropic content of finite-dimensional matrix algebras with respect to quantum states, as defined by Connes, Narnhofer, and Thining. In particular, every Abelian n x n matrix algebra together with a density matrix define the input alphabet of a quantum communication channel whose accessible information equals the entropic content of the algebra with respect to the state. The cases n = 2 and n = 3 are concretely examined in connection with the problem of the best estimation. (C) 1996 American Institute of Physics.
引用
收藏
页码:5244 / 5258
页数:15
相关论文
共 50 条
  • [1] Entropy of a subalgebra of observables and the geometric entanglement entropy
    Bianchi, Eugenio
    Satz, Alejandro
    [J]. PHYSICAL REVIEW D, 2019, 99 (08)
  • [2] Optimizing entropy relative to a channel or a subalgebra
    Uhlmann, A
    [J]. GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 344 - 348
  • [3] Density estimation by Maximum Quantum Entropy
    Silver, RN
    Wallstrom, T
    Martz, HF
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS - PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL WORKSHOP ON MAXIMUM ENTROPY AND BAYESIAN METHODS, SANTA BARBARA, CALIFORNIA, U.S.A., 1993, 1996, 62 : 161 - 174
  • [4] Quantum Query Complexity of Entropy Estimation
    Li, Tongyang
    Wu, Xiaodi
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 2899 - 2921
  • [5] Algorithm for nondestructive estimation of quantum relative entropy
    Kaltchenko, A
    [J]. QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 : 394 - 400
  • [6] Quantum estimation via the minimum Kullback entropy principle
    Olivares, Stefano
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW A, 2007, 76 (04):
  • [7] Quantum mechanical estimation of cylindrical waveguide parameters with entropy computation
    Kumar, L.
    Pandey, V. Shankar
    Parthasarathy, H.
    Shrimali, V.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (05)
  • [8] Universal non-destructive estimation of quantum relative entropy
    Kaltchenko, A
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 356 - 356
  • [9] Minimum Relative Entropy for Quantum Estimation: Feasibility and General Solution
    Zorzi, Mattia
    Ticozzi, Francesco
    Ferrante, Augusto
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 357 - 367
  • [10] Cartan Subalgebra Approach to Efficient Measurements of Quantum Observables
    Yen, Tzu-Ching
    Izmaylov, Artur F.
    [J]. PRX QUANTUM, 2021, 2 (04):