Algorithm for nondestructive estimation of quantum relative entropy

被引:0
|
作者
Kaltchenko, A [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Phys & Comp, Waterloo, ON N2L 3C5, Canada
来源
关键词
quantum relative entropy; Kullback-Leibler divergence; divergence estimation; smearing measurements; weak measurements; quantum codes;
D O I
10.1117/12.541901
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new simple algorithm for non-destructive estimation of quantum relative entropy S(rho\sigma), where the density operators rho and sigma are defined on the same finite-dimensional Hilbert space but are otherwise completely unspecified (unknown). Given N copies of a quantum state rho and N copies of a quantum state sigma, the algorithm estimates S(rho\sigma) with arbitrary high accuracy and without demolition of the input for all suitably large N. More precisely, the input of algorithm is the tensor product state rho(circle timesN) circle times sigma(circle timesN) of the 2N-fold quantum system, and the output of the algorithm consists of (i) a state of the 2N-fold quantum system and (ii) a measurement outcome which is an estimate of S (rho\\sigma). We show that, as N goes to infinity, the fidelity between the algorithm's output and input states of the 2N-fold system converges to the unity and that the quantum relative entropy estimate converges to S(rho\\sigma). In order to estimate S(rho\\sigma), the algorithm performs reversible computations followed by so-called "weak" (non-demolition) measurements on the 2N-fold system.
引用
收藏
页码:394 / 400
页数:7
相关论文
共 50 条
  • [1] Universal non-destructive estimation of quantum relative entropy
    Kaltchenko, A
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 356 - 356
  • [2] Minimum Relative Entropy for Quantum Estimation: Feasibility and General Solution
    Zorzi, Mattia
    Ticozzi, Francesco
    Ferrante, Augusto
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 357 - 367
  • [3] Mismatched Estimation and Relative Entropy
    Verdu, Sergio
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 809 - 813
  • [4] Mismatched Estimation and Relative Entropy
    Verdu, Sergio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 57 (08) : 3712 - 3720
  • [5] Inequalities for quantum relative entropy
    Bebiano, N
    Lemos, R
    da Providência, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 : 159 - 172
  • [6] A GENERALIZED QUANTUM RELATIVE ENTROPY
    Andrade, Luiza H. F.
    Vigelis, Rui F.
    Cavalcante, Charles C.
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (03) : 413 - 422
  • [7] Quantum conditional relative entropy and quasi-factorization of the relative entropy
    Capel, Angela
    Lucia, Angelo
    Perez-Garcia, David
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (48)
  • [8] A Note on the Estimation of Von Neumann and Relative Entropy via Quantum State Observers
    Balas, Mark
    Gehlot, Vinod P.
    Griffith, Tristan D.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3807 - 3811
  • [9] Parametric Bayesian Estimation of Differential Entropy and Relative Entropy
    Gupta, Maya
    Srivastava, Santosh
    [J]. ENTROPY, 2010, 12 (04) : 818 - 843
  • [10] Numerical estimation of the relative entropy of entanglement
    Zinchenko, Yuriy
    Friedland, Shmuel
    Gour, Gilad
    [J]. PHYSICAL REVIEW A, 2010, 82 (05):