On the Normality of One-fibered Monomial Ideals

被引:0
|
作者
Beddani, Charef [1 ]
Messirdi, Wahiba [1 ]
机构
[1] Taibah Univ, Dept Mat, Madinah, Saudi Arabia
关键词
integral closure of ideals; Rees algebra; Rees valuations;
D O I
10.1142/S1005386716000481
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a generalization to the higher-dimensional situation of the main results of the first author about the normality of one-fibered monomial ideals [2, Theoremes 2.4 and 3.8]. Precisely, we show that if I is a monomial ideal of R = k[x(1), x(2),...,x(d)], then I is normal one-fibered if and only if for all positive integers n and all x, y in R such that xy is an element of I-2n, either x or y belongs to I-n.
引用
收藏
页码:501 / 506
页数:6
相关论文
共 50 条
  • [41] Lifting monomial ideals
    Migliore, J
    Nagel, U
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (12) : 5679 - 5701
  • [42] On Monomial Golod Ideals
    Dao, Hailong
    De Stefani, Alessandro
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (01) : 359 - 367
  • [43] ON COMPLETE MONOMIAL IDEALS
    Gimenez, Philippe
    Simis, Aron
    Vasconcelos, Wolmer V.
    Villarreal, Rafael H.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2016, 8 (02) : 207 - 226
  • [44] Degenerations of monomial ideals
    Russell, H
    MATHEMATICAL RESEARCH LETTERS, 2004, 11 (2-3) : 231 - 249
  • [45] MONOMIAL GORENSTEIN IDEALS
    BRESINSKY, H
    MANUSCRIPTA MATHEMATICA, 1979, 29 (2-4) : 159 - 181
  • [46] Liaison of monomial ideals
    Huneke, Craig
    Ulrich, Bernd
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 384 - 392
  • [47] MONOMIAL DIFFERENCE IDEALS
    Wang, Jie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1481 - 1496
  • [48] On Monomial Ideals and Their Socles
    Geir Agnarsson
    Neil Epstein
    Order, 2020, 37 : 341 - 369
  • [49] Monomial ideals with tiny squares and Freiman ideals
    Ibrahim Al-Ayyoub
    Mehrdad Nasernejad
    Czechoslovak Mathematical Journal, 2021, 71 : 847 - 864
  • [50] Monomial Ideals with Tiny Squares and Freiman Ideals
    Al-Ayyoub, Ibrahim
    Nasernejad, Mehrdad
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (03) : 847 - 864