Transcriptomic analysis of Bifidobacterium longum subsp longum BBMN68 in response to oxidative shock

被引:29
|
作者
Zuo, Fanglei [1 ,2 ,5 ]
Yu, Rui [1 ,2 ]
Xiao, Man [1 ,2 ]
Khaskheli, Gul Bahar [1 ,2 ]
Sun, Xiaofei [1 ]
Ma, Huiqin [3 ]
Ren, Fazheng [1 ]
Zhang, Bing [4 ]
Chen, Shangwu [1 ,2 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutr Engn, Beijing Adv Innovat Ctr Food Nutr & Human Hlth, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Food Sci & Nutr Engn, Key Lab Funct Dairy, Beijing 100083, Peoples R China
[3] China Agr Univ, Coll Hort, Dept Fruit Tree Sci, Beijing 100193, Peoples R China
[4] Chinese Acad Sci, Beijing Inst Gen, Core Genom Facil, Beijing 100101, Peoples R China
[5] Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, S-10691 Stockholm, Sweden
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
ESCHERICHIA-COLI; STRESS-RESPONSE; PHYSIOLOGICAL-RESPONSES; SUPEROXIDE-DISMUTASE; LACTOCOCCUS-LACTIS; PROBIOTIC BACTERIA; PROTEOMIC ANALYSIS; STRAIN NCC2705; HEAT-SHOCK; OXYGEN;
D O I
10.1038/s41598-018-35286-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bifidobacterium longum strain BBMN68 is sensitive to low concentrations of oxygen. A transcriptomic study was performed to identify candidate genes for B. longum BBMN68's response to oxygen treatment (3%, v/v). Expression of genes and pathways of B. longum BBMN68 involved in nucleotide metabolism, amino acid transport, protein turnover and chaperones increased, and that of carbohydrate metabolism, translation and biogenesis decreased to adapt to the oxidative stress. Notably, expression of two classes of ribonucleotide reductase (RNR), which are important for deoxyribonucleotide biosynthesis, was rapidly and persistently induced. First, the class Ib RNR NrdHIEF was immediately upregulated after 5 min oxygen exposure, followed by the class III RNR NrdDG, which was upregulated after 20 min of exposure. The upregulated expression of branched-chain amino acids and tetra hydrofolate biosynthesis-related genes occurred in bifidobacteria in response to oxidative stress. These change toward to compensate for DNA and protein damaged by reactive oxygen species (ROS). In addition, oxidative stress resulted in improved B. longum BBMN68 cell hydrophobicity and autoaggregation. These results provide a rich resource for our understanding of the response mechanisms to oxidative stress in bifidobacteria.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp longum CRC 002
    Audy, Julie
    Labrie, Steve
    Roy, Denis
    LaPointe, Gisele
    MICROBIOLOGY-SGM, 2010, 156 : 653 - 664
  • [32] Probiotic Characteristics of Human-Residential Bifidobacterium longum subsp. longum Strains
    Wang M.
    Chen L.
    Zhang X.
    Tian F.
    Ni Y.
    Shipin Kexue/Food Science, 2024, 45 (02): : 155 - 162
  • [33] Detection of erm(X)-mediated antibiotic resistance in Bifidobacterium longum subsp. longum
    Cheng Luo
    Xiaomin Hang
    Xianglong Liu
    Min Zhang
    Xu Yang
    Hong Yang
    Annals of Microbiology, 2015, 65 : 1985 - 1991
  • [34] Complete Genome Sequence of Bifidobacterium longum subsp. longum JCM7052
    Yamamoto, Isamu
    Ueno, Yumiko
    Geshi, Miho
    Inagaki, Yoshishige
    Odamaki, Toshitaka
    Fujita, Kiyotaka
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2021, 10 (14):
  • [35] Changes in ffh, uvrA, groES and dnaK mRNA Abundance as a Function of Acid-Adaptation and Growth Phase in Bifidobacterium longum BBMN68 Isolated from Healthy Centenarians
    Junhua Jin
    Songling Liu
    Liang Zhao
    Keshan Ge
    Xueying Mao
    Fazheng Ren
    Current Microbiology, 2011, 62 : 612 - 617
  • [36] Probiotic characteristics and in vitro compatibility of a combination of Bifidobacterium breve M-16 V, Bifidobacterium longum subsp infantis M-63 and Bifidobacterium longum subsp longum BB536
    Toscano, Marco
    De Vecchi, Elena
    Gabrieli, Arianna
    Zuccotti, Gian Vincenzo
    Drago, Lorenzo
    ANNALS OF MICROBIOLOGY, 2015, 65 (02) : 1079 - 1086
  • [37] Changes in ffh, uvrA, groES and dnaK mRNA Abundance as a Function of Acid-Adaptation and Growth Phase in Bifidobacterium longum BBMN68 Isolated from Healthy Centenarians
    Jin, Junhua
    Liu, Songling
    Zhao, Liang
    Ge, Keshan
    Mao, Xueying
    Ren, Fazheng
    CURRENT MICROBIOLOGY, 2011, 62 (02) : 612 - 617
  • [38] Exopolysaccharide from Bifidobacterium longum subsp longum 35624™ modulates murine allergic airway responses
    Schiavi, E.
    Plattner, S.
    Rodriguez-Perez, N.
    Barcik, W.
    Frei, R.
    Ferstl, R.
    Kurnik-Lucka, M.
    Groeger, D.
    Grant, R.
    Roper, J.
    Altmann, F.
    van Sinderen, D.
    Akdis, C. A.
    O'Mahony, L.
    BENEFICIAL MICROBES, 2018, 9 (05) : 761 - 773
  • [39] Utilization of galactooligosaccharides by Bifidobacterium longum subsp infantis isolates
    Garrido, Daniel
    Ruiz-Moyano, Santiago
    Jimenez-Espinoza, Rogelio
    Eom, Hyun-Ju
    Block, David E.
    Mills, David A.
    FOOD MICROBIOLOGY, 2013, 33 (02) : 262 - 270
  • [40] Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum
    Kiyotaka Fujita
    Ayami Sakamoto
    Satoshi Kaneko
    Toshihisa Kotake
    Yoichi Tsumuraya
    Kanefumi Kitahara
    Applied Microbiology and Biotechnology, 2019, 103 : 1299 - 1310