Diffusion in one-dimensional multifractal porous media

被引:21
|
作者
Lovejoy, S
Schertzer, D
Silas, P
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Univ Paris 06, CNRS, LMM, F-75252 Paris 05, France
关键词
D O I
10.1029/1998WR900007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We examine the scaling properties of one-dimensional random walks on media with multifractal diffusivities, which is a simple model for transport in scaling porous media. We find both theoretically and numerically that the anomalous scaling exponent of the walk is d(w) 2 + K(-1) where K(-1) is the scaling exponent of the reciprocal spatially averaged ("dressed") resistance to diffusion. Since K(-1) > 0, the walk is subdiffusive; the walkers are effectively trapped in a hierarchy of barriers. The trapping is dominated by contributions from a specific order of singularity associated with a phase transition between anomalous and normal diffusion. We discuss the implications for transport in porous media.
引用
收藏
页码:3283 / 3291
页数:9
相关论文
共 50 条
  • [21] Inverse problem for one-dimensional subsurface flow in unsaturated porous media
    Lehmann, F
    Ackerer, P
    COMPUTATIONAL METHODS IN WATER RESOURCES XI, VOL 1: COMPUTATIONAL METHODS IN SUBSURFACE FLOW AND TRANSPORT PROBLEMS, 1996, : 551 - 558
  • [22] Meshfree modelling of one-dimensional contaminant transport in unsaturated porous media
    Kumar, R. Praveen
    Dodagoudar, G. R.
    Rao, B. N.
    GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2007, 2 (02): : 129 - 136
  • [23] A boundary integral approach to one-dimensional transport in unsaturated porous media
    Onyejekwe, OO
    Kuwornoo, DK
    COMPUTER METHODS AND WATER RESOURCES IV, 2000, 6 : 111 - 120
  • [25] UNSTEADY FLOW OF GAS THROUGH POROUS MEDIA - ONE-DIMENSIONAL CASE
    ARONOFSKY, JS
    JENKINS, R
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1951, 18 (03): : 325 - 326
  • [26] A posteriori error estimate for a one-dimensional pollution problem in porous media
    Aboulaich, Rajaa
    Achchab, Boujemaa
    Darouichi, Aziz
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (19-20) : 1217 - 1222
  • [27] Analytical approximations for flow in compressible, saturated, one-dimensional porous media
    Barry, D. A.
    Lockington, D. A.
    Jeng, D. -S.
    Parlange, J. -Y.
    Li, L.
    Stagnitti, F.
    ADVANCES IN WATER RESOURCES, 2007, 30 (04) : 927 - 936
  • [28] Parametric study of one-dimensional solute transport in deformable porous media
    Alshawabkeh, Akram N.
    Rahbar, Nima
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2006, 132 (08) : 1001 - 1010
  • [29] Singular solutions of one-dimensional SH wave equation in porous media
    Kholmurodov, A. E.
    Toshmurodova, G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 300 - 304
  • [30] Shock Propagation in a One-Dimensional Flow Through Deformable Porous Media
    E. Comparini
    M. Ughi
    Meccanica, 2000, 35 : 119 - 132