Domain-oriented Language Modeling with Adaptive Hybrid Masking and Optimal Transport Alignment

被引:1
|
作者
Zhang, Denghui [1 ]
Yuan, Zixuan [1 ]
Liu, Yanchi [2 ]
Liu, Hao [4 ]
Zhuang, Fuzhen [3 ]
Xiong, Hui [1 ]
Chen, Haifeng [2 ]
机构
[1] Rutgers State Univ, New Brunswick, NJ 08854 USA
[2] NEC Labs Amer, Princeton, NJ 08540 USA
[3] Beihang Univ, Inst Artificial Intelligence, Sch Comp Sci, Beijing, Peoples R China
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Domain language modeling; pre-training; masked language model; optimal transport;
D O I
10.1145/3447548.3467215
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by the success of pre-trained language models such as BERT in a broad range of natural language processing (NLP) tasks, recent research efforts have been made for adapting these models for different application domains. Along this line, existing domain-oriented models have primarily followed the vanilla BERT architecture, and have a straightforward use of the domain corpus. However, domain-oriented tasks usually require accurate understanding of domain phrases, and such fine-grained phrase-level knowledge is hard to be captured by existing pre-training scheme. Also, the word co-occurrences guided semantic learning of pre-training models can be largely augmented by entity-level association knowledge. But meanwhile, there is a risk of introducing noise due to the lack of groundtruth word-level alignment. To address the above issues, we provide a generalized domain-oriented approach, which leverages auxiliary domain knowledge to improve the existing pre-training framework from two aspects. First, to preserve phrase knowledge effectively, we build a domain phrase pool as auxiliary knowledge, meanwhile we introduce Adaptive I Hybrid Masked Model to incorporate such knowledge. It integrates two learning modes, word learning and phrase learning, and allows them to switch between each other. Second, we introduce Cross Entity Alignment to leverage entity association as weak supervision to augment the semantic learning of pre-trained models. To alleviate the potential noise in this process, we introduce an interpretable, Optimal Transport based approach to guide alignment learning. Experiments on four domain oriented tasks demonstrate the superiority of our framework.
引用
收藏
页码:2145 / 2153
页数:9
相关论文
共 42 条
  • [41] Intelligent fault diagnosis of multi-source cross-machine bearings based on center-weighted optimal transport and class-level alignment domain adaptation
    Shang, Zhiwu
    Wu, Changchao
    Liu, Fei
    Pan, Cailu
    Cheng, Hongchuan
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [42] System modeling of micro-grid with hybrid energy sources for optimal energy management-A hybrid elephant herding optimization algorithm-adaptive neuro fuzzy inference system approach
    Durairasan, M.
    Ramprakash, S.
    Balasubramanian, Divya
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2021, 34 (06)