Characterization of an immunodeficient mouse model of mucopolysaccharidosis type I suitable for preclinical testing of human stem cell and gene therapy

被引:32
|
作者
Garcia-Rivera, Mayra F.
Colvin-Wanshura, Leah E.
Nelson, Matthew S.
Nan, Zhenhong
Khan, Shaukat A.
Rogers, Tyson B.
Maitra, Indrani
Low, Walter C.
Gupta, Pankaj
机构
[1] Univ Minnesota, Vet Adm Med Ctr, Hematol Oncol Sect, Minneapolis, MN 55417 USA
[2] Univ Minnesota, Sch Med, Dept Neurosurg, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Med, Hematol Oncol Transplantat Div, Minneapolis, MN 55455 USA
关键词
stem cell; mice; mucopolysacchariclosis I; animal model; glycosaminoglycans; iduronidase; rotarod performance test; ganglioside;
D O I
10.1016/j.brainresbull.2007.07.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mucopolysaccharidosis type I (NIPS-I or Hurler syndrome) is an inherited deficiency of the lysosomal glycosaininoglycan (GAG)-degrading enzyme alpha-L-iduronidase (IDUA) in which GAG accumulation causes progressive multi-system dysfunction and death. Early allogeneic hematopoietic stem cell transplantation (HSCT) ameliorates clinical features and extends life but is not available to all patients, and inadequately corrects its most devastating features including mental retardation and skeletal deformities. To test novel therapies, we characterized an immunodeficient MPS-I mouse model less likely to develop immune reactions to transplanted human or gene-corrected cells or secreted IDUA. In the liver, spleen, heart, lung, kidney and brain of NOD/SCID/MPS-I mice IDUA was undetectable, and reduced to half in heterozygotes. MPS-I mice developed marked GAG accumulation (3-38-fold) in these organs. Neuropathological examination showed GM(3) ganglioside accumulation in the striatum, cerebral peduncles, cerebellum and ventral brainstem of MPS-I mice. Urinary GAG excretion (6.5-fold higher in MPS-I mice) provided a non-invasive and reliable method suitable for serially following the biochemical efficacy of therapeutic interventions. We identified and validated using rigorous biostatistical methods, a highly reproducible method for evaluating sensorimotor function and motor skills development. This Rotarod test revealed marked abnormalities in sensorimotor integration involving the cerebellum, striatum, proprioceptive pathways, motor cortex, and in acquisition of motor coordination. NOD/SCID/MPS-I mice exhibit many of the clinical, skeletal, pathological and behavioral abnormalities of human MPS-I, and provide an extremely suitable animal model for assessing the systemic and neurological effects of human stem cell transplantation and gene therapeutic approaches, using the above techniques to measure efficacy. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 50 条
  • [1] Characterization of an immunodeficient mucopolysaccharidosis type I (MPS-I) mouse model suitable for preclinical testing of human stem cell and gene therapy.
    Quito-Rivera, MF
    Colvin-Wanshura, LE
    Nelson, MS
    Nan, ZH
    Khan, SA
    Rogers, TB
    Maitra, I
    Low, WC
    Gupta, P
    BLOOD, 2005, 106 (11) : 368A - 368A
  • [2] Characterization of an immunodeficient mouse model of mucopolysaccharidosis type I suitable for preclinical testing of human stem cell and gene therapy (vol 74, pg 429, 2007)
    Garcia-Rivera, Mayra F.
    Colvin-Wanshura, Leah E.
    Nelson, Matthew S.
    Nan, Zhenhong
    Khan, Shaukat A.
    Rogers, Tyson B.
    Maitra, Indrani
    Low, Walter C.
    Gupta, Pankaj
    BRAIN RESEARCH BULLETIN, 2008, 76 (06) : 640 - 641
  • [3] A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy
    Yohta Shimada
    Natsumi Ishii
    Takashi Higuchi
    Motohito Goto
    Toya Ohashi
    Hiroshi Kobayashi
    Gene Therapy, 2023, 30 : 288 - 296
  • [4] A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy
    Shimada, Yohta
    Ishii, Natsumi
    Higuchi, Takashi
    Goto, Motohito
    Ohashi, Toya
    Kobayashi, Hiroshi
    GENE THERAPY, 2023, 30 (3-4) : 288 - 296
  • [5] Gene therapy of Type I mucopolysaccharidosis by liver organ stem cells in the mouse model
    Tuysuz, N.
    Koole, W.
    Garcia, T. Martins
    van Til, N.
    Wagemaker, G.
    Huch, M.
    Vries, R. G.
    Clevers, H.
    HUMAN GENE THERAPY, 2014, 25 (11) : A63 - A63
  • [6] Generation and characterization of an immunodeficient mouse model of mucopolysaccharidosis type II
    Smith, Miles C.
    Belur, Lalitha R.
    Karlen, Andrea D.
    Podetz-Pedersen, Kelly
    Erlanson, Olivia
    Laoharawee, Kanut
    Furcich, Justin
    Lund, Troy C.
    You, Yun
    Seelig, Davis
    Webber, Beau R.
    McIvor, R. Scott
    MOLECULAR GENETICS AND METABOLISM, 2023, 138 (04)
  • [7] Stem Cell Transplantation in a Novel, Long-Lived, and Highly Engraftable Immunodeficient Mouse Model of Mucopolysaccharidosis Type I
    Mendez, Daniel C.
    Stover, Alexander E.
    Rangel, Anthony D.
    Khalid, Omar
    Le, Steven Q.
    Kan, Shih-hsin
    Dickson, Patricia I.
    Schwartz, Philip H.
    MOLECULAR THERAPY, 2015, 23 : S239 - S239
  • [8] Lentiviral mediated stem cell gene therapy corrects a mouse model of mucopolysaccharidosis type IIIA
    Bigger, Brian
    Langford-Smith, Alex
    Wilkinson, Fiona
    Langford-Smith, Kia
    Sergijenko, Ana
    Wraith, Ed
    Wynn, Rob
    MOLECULAR GENETICS AND METABOLISM, 2011, 102 (02) : S8 - S8
  • [9] Neonatal gene therapy in a Mucopolysaccharidosis type I (MPSI) mouse model
    De Ponti, G.
    Santi, L.
    Dina, G.
    Pievani, A.
    Donsante, S.
    Riminucci, M.
    Corsi, A.
    Sawamoto, K.
    Passerini, L.
    Annoni, A.
    Gregori, S.
    Biondi, A.
    Quattrini, A.
    Tomatsu, S.
    Aiuti, A.
    Bernardo, M. E.
    Serafini, M.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A171 - A172
  • [10] Generation of a novel immunodeficient mouse model of Mucopolysaccharidosis type IIIA to test human stem cell-based therapies
    Mandolfo, Oriana
    Parker, Helen
    Usman, Asma'u
    Learmonth, Yuko Ishikawa
    Holley, Rebecca J.
    Macdonald, Andrew
    Mckay, Tristan
    Bigger, Brian
    MOLECULAR GENETICS AND METABOLISM, 2024, 143 (1-2)