Spatial Scale Effect and Correction of Forest Aboveground Biomass Estimation Using Remote Sensing

被引:19
|
作者
Yu, Ying [1 ,2 ]
Pan, Yan [1 ,2 ]
Yang, Xiguang [1 ,2 ]
Fan, Wenyi [1 ,2 ]
机构
[1] Northeast Forestry Univ, Sch Forestry, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Key Lab Sustainable Forest Ecosyst Management, Minist Educ, Harbin 150040, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
forest aboveground biomass (AGB); scale effect; random forest (RF); scale correction; AIRBORNE LIDAR; CLIMATE-CHANGE; CARBON STOCKS; HETEROGENEITY; UNCERTAINTY; FIELD; SAR; ECOSYSTEMS; EQUATIONS; DENSITY;
D O I
10.3390/rs14122828
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest biomass is critically important for forest dynamics in the carbon cycle. However, large-scale AGB mapping applications from remote sensing data still carry large uncertainty. In this study, an AGB estimation model was first established with three different remote sensing datasets of GF-2, Sentinel-2 and Landsat-8. Next, the optimal scale estimation result was considered as a reference AGB to obtain the relative true AGB distribution at different scales based on the law of conservation of mass, and the error of the scale effect of AGB estimation at various spatial resolutions was analyzed. Then, the information entropy of land use type was calculated to identify the heterogeneity of pixels. Finally, a scale conversion method for the entropy-weighted index was developed to correct the scale error of the estimated AGB results from coarse-resolution remote sensing images. The results showed that the random forest model had better prediction accuracy for GF-2 (4 m), Sentinel-2 (10 m) and Landsat-8 (30 m) AGB mapping. The determination coefficient between predicted and measured AGB was 0.5711, 0.4819 and 0.4321, respectively. Compared to uncorrected AGB, R-2 between scale-corrected results and relative true AGB increased from 0.6226 to 0.6725 for Sentinel-2, and increased from 0.5910 to 0.6704 for Landsat-8. The scale error was effectively corrected. This study can provide a reference for forest AGB estimation and scale error reduction for AGB production upscaling with consideration of the spatial heterogeneity of the forest surface.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale
    Shu, Qingtai
    Xi, Lei
    Wang, Keren
    Xie, Fuming
    Pang, Yong
    Song, Hanyue
    [J]. REMOTE SENSING, 2022, 14 (17)
  • [2] Stratified aboveground forest biomass estimation by remote sensing data
    Latifi, Hooman
    Fassnacht, Fabian E.
    Hartig, Florian
    Berger, Christian
    Hernandez, Jaime
    Corvalan, Patricio
    Koch, Barbara
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 38 : 229 - 241
  • [3] Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing
    Jung, Jaehoon
    Nguyen, Hieu Cong
    Heo, Joon
    Kim, Kyoungmin
    Im, Jungho
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2014, 30 (05) : 651 - 664
  • [4] Remote Sensing Estimation of Grassland Aboveground Biomass based on Random Forest
    Xing, Xiaoyu
    Yang, Xiuchun
    Xu, Bin
    Jin, Yunxiang
    Guo, Jian
    Chen, Ang
    Yang, Dong
    Wang, Ping
    Zhu, Libo
    [J]. Journal of Geo-Information Science, 2021, 23 (07) : 1312 - 1324
  • [5] Remote sensing of aboveground forest biomass: A review
    Timothy, Dube
    Onisimo, Mutanga
    Cletah, Shoko
    Adelabu, Samuel
    Tsitsi, Bangira
    [J]. TROPICAL ECOLOGY, 2016, 57 (02) : 125 - 132
  • [6] Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data
    Wang, Xinchuang
    Jiao, Haiming
    [J]. IEEE ACCESS, 2020, 8 : 178870 - 178885
  • [7] Remote Sensing Estimation of Forest Aboveground Biomass Based on Lasso-SVR
    Wang, Ping
    Tan, Sanqing
    Zhang, Gui
    Wang, Shuang
    Wu, Xin
    [J]. FORESTS, 2022, 13 (10):
  • [8] Combining Kriging Interpolation to Improve the Accuracy of Forest Aboveground Biomass Estimation Using Remote Sensing Data
    Li, Yingchang
    Li, Mingyang
    Liu, Zhenzhen
    Li, Chao
    [J]. IEEE ACCESS, 2020, 8 : 128124 - 128139
  • [9] Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data
    Goita, Kalifa
    Mouloungou, Jacques
    Benie, Goze Bertin
    [J]. GEOCARTO INTERNATIONAL, 2019, 34 (03) : 243 - 259
  • [10] Forest Aboveground Biomass Estimation and Inventory: Evaluating Remote Sensing-Based Approaches
    Khan, Muhammad Nouman
    Tan, Yumin
    Gul, Ahmad Ali
    Abbas, Sawaid
    Wang, Jiale
    [J]. FORESTS, 2024, 15 (06):