On choosing the centering distribution in Dirichlet process mixture models

被引:2
|
作者
Hanson, T [1 ]
Sethuraman, J
Xu, L
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
关键词
Bayesian; Gaussian; nonparametric;
D O I
10.1016/j.spl.2004.12.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present two results that pertain to the choosing of the centering distribution in a Bayesian setup with a Dirichlet process mixture prior based on Gaussian kernels. Our results indicate that for such kernels, one can choose the centering measure for the Dirichlet process mixture model exactly as one would in the analogous simpler Dirichlet process model. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [1] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Goeruer, Dilan
    Rasmussen, Carl Edward
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2010, 25 (04) : 653 - 664
  • [2] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Dilan Görür
    Carl Edward Rasmussen
    [J]. Journal of Computer Science and Technology, 2010, 25 : 653 - 664
  • [3] Dirichlet Process Gaussian Mixture Models:Choice of the Base Distribution
    Dilan Grür
    Carl Edward Rasmussen
    [J]. Journal of Computer Science & Technology, 2010, 25 (04) : 653 - 664
  • [4] Estimating mixture of Dirichlet process models
    MacEachern, SN
    Muller, P
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 223 - 238
  • [5] Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution
    Meguelati, Khadidja
    Fontez, Benedicte
    Hilgert, Nadine
    Masseglia, Florent
    [J]. SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 502 - 509
  • [6] Dirichlet process mixture models with shrinkage prior
    Ding, Dawei
    Karabatsos, George
    [J]. STAT, 2021, 10 (01):
  • [7] Distributed Inference for Dirichlet Process Mixture Models
    Ge, Hong
    Chen, Yutian
    Wan, Moquan
    Ghahramani, Zoubin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2276 - 2284
  • [8] DIRICHLET PROCESS MIXTURE MODELS WITH MULTIPLE MODALITIES
    Paisley, John
    Carin, Lawrence
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1613 - 1616
  • [9] Background Subtraction with Dirichlet Process Mixture Models
    Haines, Tom S. F.
    Xiang, Tao
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 670 - 683
  • [10] Collapsed Variational Dirichlet Process Mixture Models
    Kurihara, Kenichi
    Welling, Max
    Teh, Yee Whye
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2796 - 2801