Dirichlet process mixture models with shrinkage prior

被引:2
|
作者
Ding, Dawei [1 ]
Karabatsos, George [1 ,2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Educ Psychol, Chicago, IL USA
来源
STAT | 2021年 / 10卷 / 01期
基金
美国国家科学基金会;
关键词
Bayesian nonparametrics; regression; shrinkage prior; variable selection;
D O I
10.1002/sta4.371
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose Dirichlet process mixture (DPM) models for prediction and cluster-wise variable selection. based on two choices of shrinkage baseline prior distributions for the linear regression coefficients, namely, the Horseshoe prior and the Normal-Gamma prior. We show in a simulation study that each of the two proposed DPM models tends to outperform the standard DPM model based on the non-shrinkage normal prior, in terms of predictive, variable selection, and clustering accuracy. This is especially true for the Horseshoe model and when the number of covariates exceeds the within-cluster sample size. A real data set is analysed to illustrate the proposed modelling methodology, where both proposed DPM models again attained better predictive accuracy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Selecting the precision parameter prior in Dirichlet process mixture models
    Murugiah, Siva
    Sweeting, Trevor
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 1947 - 1959
  • [2] On selecting a prior for the precision parameter of Dirichlet process mixture models
    Dorazio, Robert M.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3384 - 3390
  • [3] Estimating mixture of Dirichlet process models
    MacEachern, SN
    Muller, P
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 223 - 238
  • [4] Distributed Inference for Dirichlet Process Mixture Models
    Ge, Hong
    Chen, Yutian
    Wan, Moquan
    Ghahramani, Zoubin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2276 - 2284
  • [5] DIRICHLET PROCESS MIXTURE MODELS WITH MULTIPLE MODALITIES
    Paisley, John
    Carin, Lawrence
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1613 - 1616
  • [6] Background Subtraction with Dirichlet Process Mixture Models
    Haines, Tom S. F.
    Xiang, Tao
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 670 - 683
  • [7] Collapsed Variational Dirichlet Process Mixture Models
    Kurihara, Kenichi
    Welling, Max
    Teh, Yee Whye
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2796 - 2801
  • [8] Stylometric analyses using Dirichlet process mixture models
    Gill, Paramjit S.
    Swartz, Tim B.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) : 3665 - 3674
  • [9] Fast Bayesian Inference in Dirichlet Process Mixture Models
    Wang, Lianming
    Dunson, David B.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 196 - 216
  • [10] Dirichlet process mixture models for regression discontinuity designs
    Ricciardi, Federico
    Liverani, Silvia
    Baio, Gianluca
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (01) : 55 - 70