Chordality, d-collapsibility, and componentwise linear ideals

被引:8
|
作者
Bigdeli, Mina [1 ]
Faridi, Sara [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Betti number; Chordality; Collapsibility; Componentwise linear; Linear resolution; Simplicial complex; Stanley-Reisner ideal; SHELLABLE NONPURE COMPLEXES; BETTI NUMBERS; CLUTTERS;
D O I
10.1016/j.jcta.2019.105204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the concept of d-collapsibility from combinatorial topology, we define chordal simplicial complexes and show that their Stanley-Reisner ideals are componentwise linear. Our construction is inspired by and an extension of "chordal clutters" which was defined by Bigdeli, Yazdan Pour and Zaare-Nahandi in 2017, and characterizes Betti tables of all ideals with a linear resolution in a polynomial ring. We show d-collapsible and d-representable complexes produce componentwise linear ideals for appropriate d. Along the way, we prove that there are generators that when added to the ideal, do not change Betti numbers in certain degrees. We then show that large classes of componentwise linear ideals, such as Gotzmann ideals and square-free stable ideals have chordal Stanley-Reisner complexes, that Alexander duals of vertex decomposable complexes are chordal, and conclude that the Betti table of every componentwise linear ideal is identical to that of the Stanley-Reisner ideal of a chordal complex. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Face numbers of sequentially Cohen-Macaulay complexes and Betti numbers of componentwise linear ideals
    Adiprasito, Karim A.
    Bjorner, Anders
    Goodarzi, Afshin
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (12) : 3851 - 3865
  • [22] COMPONENTWISE LINEARITY OF IDEALS ARISING FROM GRAPHS
    Crispin, Veronica
    Emtander, Eric
    MATEMATICHE, 2008, 63 (02): : 185 - 189
  • [23] Componentwise linearity of edge ideals of weighted oriented graphs
    Kumar, Manohar
    Nanduri, Ramakrishna
    Saha, Kamalesh
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (03)
  • [24] On the componentwise stability of linear systems
    Pastravanu, O
    Voicu, M
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (01) : 15 - 23
  • [25] Componentwise and Cartesian decompositions of linear relations
    Hassi, S.
    De Snoo, H. S. V.
    Szafraniec, F. H.
    DISSERTATIONES MATHEMATICAE, 2009, (465) : 4 - 58
  • [27] Componentwise stability of 1D and 2D linear discrete-time systems
    Hmamed, A
    AUTOMATICA, 1997, 33 (09) : 1759 - 1762
  • [28] Componentwise error bounds for linear complementarity problems
    Wang, Zhengyu
    Yuan, Ya-Xiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 348 - 357
  • [29] COMPONENTWISE LINEAR MODULES OVER A KOSZUL ALGEBRA
    Lu, Dancheng
    Zhou, Dexu
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2135 - 2147
  • [30] COMPONENTWISE LINEAR POWERS AND THE x-CONDITION
    Herzog, Jurgen
    Hibi, Takayuki
    Moradi, Somayeh
    MATHEMATICA SCANDINAVICA, 2022, 128 (03) : 401 - 433