Chordality, d-collapsibility, and componentwise linear ideals

被引:8
|
作者
Bigdeli, Mina [1 ]
Faridi, Sara [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Betti number; Chordality; Collapsibility; Componentwise linear; Linear resolution; Simplicial complex; Stanley-Reisner ideal; SHELLABLE NONPURE COMPLEXES; BETTI NUMBERS; CLUTTERS;
D O I
10.1016/j.jcta.2019.105204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the concept of d-collapsibility from combinatorial topology, we define chordal simplicial complexes and show that their Stanley-Reisner ideals are componentwise linear. Our construction is inspired by and an extension of "chordal clutters" which was defined by Bigdeli, Yazdan Pour and Zaare-Nahandi in 2017, and characterizes Betti tables of all ideals with a linear resolution in a polynomial ring. We show d-collapsible and d-representable complexes produce componentwise linear ideals for appropriate d. Along the way, we prove that there are generators that when added to the ideal, do not change Betti numbers in certain degrees. We then show that large classes of componentwise linear ideals, such as Gotzmann ideals and square-free stable ideals have chordal Stanley-Reisner complexes, that Alexander duals of vertex decomposable complexes are chordal, and conclude that the Betti table of every componentwise linear ideal is identical to that of the Stanley-Reisner ideal of a chordal complex. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] STRONG d-COLLAPSIBILITY
    Tancer, Martin
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2011, 6 (02) : 32 - 35
  • [2] Componentwise linear ideals
    Herzog, J
    Hibi, T
    NAGOYA MATHEMATICAL JOURNAL, 1999, 153 : 141 - 153
  • [3] The threshold for d-collapsibility in random complexes*
    Aronshtam, L.
    Linial, N.
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (02) : 260 - 269
  • [4] Powers of Componentwise Linear Ideals
    Herzog, Juergen
    Hibi, Takayuki
    Ohsugi, Hidefumi
    COMBINATORIAL ASPECTS OF COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY: THE ABEL SYMPOSIUM 2009, 2011, 6 : 49 - +
  • [5] Ideals with componentwise linear powers
    Hibi, Takayuki
    Moradi, Somayeh
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 833 - 841
  • [6] Ideals with Linear Quotients and Componentwise Polymatroidal Ideals
    Bandari, Somayeh
    Qureshi, Ayesha Asloob
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [7] Ideals with Linear Quotients and Componentwise Polymatroidal Ideals
    Somayeh Bandari
    Ayesha Asloob Qureshi
    Mediterranean Journal of Mathematics, 2023, 20
  • [8] The Lefschetz property for componentwise linear ideals and Gotzmann ideals
    Wiebe, A
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) : 4601 - 4611
  • [9] Integrally closed and componentwise linear ideals
    Aldo Conca
    Emanuela De Negri
    Maria Evelina Rossi
    Mathematische Zeitschrift, 2010, 265 : 715 - 734
  • [10] Integrally closed and componentwise linear ideals
    Conca, Aldo
    De Negri, Emanuela
    Rossi, Maria Evelina
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (03) : 715 - 734