A Generator of Multiextremal Test Classes With Known Solutions for Black-Box-Constrained Global Optimization

被引:6
|
作者
Sergeyev, Yaroslav D. D. [1 ,2 ,3 ]
Kvasov, Dmitri E. E. [1 ,2 ]
Mukhametzhanov, Marat S. S. [1 ,2 ]
机构
[1] Univ Calabria, DIMES, Arcavacata Di Rende 87036, Italy
[2] IITMM, Lobachevsky State Univ, Nizhnii Novgorod 603950, Russia
[3] Italian Natl Res Council, Inst High Performance Computingand Networking, I-87036 Arcavacata Di Rende, Italy
基金
俄罗斯科学基金会;
关键词
Optimization; Generators; Linear programming; Benchmark testing; Visualization; Software algorithms; Software; Benchmarking optimization software; black-box global optimization; GKLS-generator; known global minima; problems with nonlinear constraints; ALGORITHMS; SOFTWARE;
D O I
10.1109/TEVC.2021.3139263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A generator of classes of multidimensional test problems for benchmarking continuous constrained global optimization methods is proposed. It is based on the generator of test classes for global optimization proposed in 2003 by Gaviano, Kvasov, Lera, and Sergeyev and extends the previous generation procedure from the box-constrained case to the case of nonlinear constraints. The user has the possibility to fix the difficulty of tests in an intuitive way by choosing several types of constraints. A detailed information (including the global solution) for each of 100 problems in each generated class is provided to the user. The generator is particularly suited for testing black-box optimization algorithms that normally address low or medium dimensional problems with hard to evaluate objective functions.
引用
收藏
页码:1261 / 1270
页数:10
相关论文
共 50 条
  • [41] An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization
    Kenneth Holmström
    Nils-Hassan Quttineh
    Marcus M. Edvall
    Optimization and Engineering, 2008, 9 : 311 - 339
  • [42] A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points
    Yaohui Li
    Yizhong Wu
    Jianjun Zhao
    Liping Chen
    Journal of Global Optimization, 2017, 67 : 343 - 366
  • [43] A Comparison of Global Search Algorithms for Continuous Black Box Optimization
    Posik, Petr
    Huyer, Waltraud
    Pal, Laszlo
    EVOLUTIONARY COMPUTATION, 2012, 20 (04) : 509 - 541
  • [44] A method for convex black-box integer global optimization
    Jeffrey Larson
    Sven Leyffer
    Prashant Palkar
    Stefan M. Wild
    Journal of Global Optimization, 2021, 80 : 439 - 477
  • [45] Efficient Global Optimization of Expensive Black-Box Functions
    Donald R. Jones
    Matthias Schonlau
    William J. Welch
    Journal of Global Optimization, 1998, 13 : 455 - 492
  • [46] Efficient global optimization of expensive black-box functions
    Jones, DR
    Schonlau, M
    Welch, WJ
    JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) : 455 - 492
  • [47] A method for convex black-box integer global optimization
    Larson, Jeffrey
    Leyffer, Sven
    Palkar, Prashant
    Wild, Stefan M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (02) : 439 - 477
  • [48] A Tunable Constrained Test Problems Generator for Multi-objective Optimization
    Cheng Peng
    SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 96 - 100
  • [49] An Evolutionary Algorithm for Black-Box Chance-Constrained Function Optimization
    Masutomi, Kazuyuki
    Nagata, Yuichi
    Ono, Isao
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2013, 17 (02) : 272 - 282
  • [50] Adaptive sampling Bayesian algorithm for constrained black-box optimization problems
    Fan, Shuyuan
    Hong, Xiaodong
    Liao, Zuwei
    Ren, Congjing
    Yang, Yao
    Wang, Jingdai
    Yang, Yongrong
    AICHE JOURNAL, 2025, 71 (04)