Spectral Properties of Discrete Sturm-Liouville Problems with two Squared Eigenparameter-Dependent Boundary Conditions

被引:0
|
作者
Gao, Chenghua [1 ]
Wang, Yali [1 ]
Lv, Li [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Discrete Sturm-Liouville problems; squared eigenparameter-dependent boundary conditions; interlacing; oscillation properties; orthogonality; 2ND-ORDER DIFFERENCE-EQUATIONS; ROOT FUNCTIONS; UNIFORM-CONVERGENCE; EIGENVALUE PROBLEMS; FOURIER-SERIES; PARAMETER; SYSTEM; EIGENFUNCTIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider a discrete right-definite Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions. By constructing some new Lagrange-type identities and two fundamental functions, we obtain not only the existence, the simplicity, and the interlacing properties of the real eigenvalues, but also the oscillation properties, orthogonality of the eigenfunctions, and the expansion theorem. Finally, we also give a computation scheme for computing eigenvalues and eigenfunctions of specific eigenvalue problems.
引用
收藏
页码:755 / 781
页数:27
相关论文
共 50 条