Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions

被引:19
|
作者
Ao, Ji-jun [1 ]
Sun, Jiong [2 ]
机构
[1] Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Peoples R China
[2] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
Sturm-Liouville problems; Matrix eigenvalue problems; Finite spectrum; Coupled eigenparameter-dependent boundary conditions; TRANSMISSION CONDITIONS; EIGENVALUE PROBLEMS; FINITE SPECTRUM; PARAMETER;
D O I
10.1016/j.amc.2014.06.096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions with a finite spectrum. We prove for any positive integer n, the considered problems have at most n + 3 eigenvalues, and show that this kind of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions is equivalent to a class of matrix eigenvalue problems in the sense that they have exactly the same eigenvalues. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:142 / 148
页数:7
相关论文
共 50 条