Unsupervised Feature Learning for EEG-based Emotion Recognition

被引:10
|
作者
Lan, Zirui [1 ]
Sourina, Olga [1 ]
Wang, Lipo [2 ]
Scherer, Reinhold [3 ]
Mueller-Putz, Gernot [3 ]
机构
[1] Nanyang Technol Univ, Fraunhofer Singapore, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[3] Graz Univ Technol, Inst Neural Engn, Graz, Austria
基金
新加坡国家研究基金会;
关键词
emotion classification; electroencephalogram (EEG); brain-computer-interface (BCI); power spectral density; unsupervised feature extraction; autoencoder;
D O I
10.1109/CW.2017.19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spectral band power features are one of the most widely used features in the studies of electroencephalogram (EEG)-based emotion recognition. The power spectral density of EEG signals is partitioned into different bands such as delta, theta, alpha and beta band etc. Though based on neuroscientific findings, the partition of frequency bands is somewhat on an adhoc basis, and the definition of frequency ranges of the bands of interest can vary between studies. On the other hand, it is also arguable that one definition of power bands could perform equally well on all subjects. In this paper, we propose to use autoencoder to automatically learn from each subject the salient frequency components from power spectral density estimated as periodogram by Fast Fourier Transform (FFT). We propose a network architecture especially for EEG feature extraction, one that adopts hidden unit clustering with added pooling neuron per cluster. The classification accuracy with features extracted by our proposed method is benchmarked against that with standard power features. Experimental results show that our proposed feature extraction method achieves accuracy ranging from 44% to 59% for three-emotion classification. We also see a 4-20% accuracy improvement over standard band power features.
引用
收藏
页码:182 / 185
页数:4
相关论文
共 50 条
  • [31] Enhancing Performance of EEG-based Emotion Recognition Systems Using Feature Smoothing
    Trung Duy Pham
    Dat Tran
    Ma, Wanli
    Nga Thuy Tran
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 95 - 102
  • [32] EEG-based Automatic Emotion Recognition: Feature Extraction, Selection and Classification Methods
    Ackermann, Pascal
    Kohlschein, Christian
    Bitsch, Jo Agila
    Wehrle, Klaus
    Jeschke, Sabina
    2016 IEEE 18TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2016, : 159 - 164
  • [33] Unsupervised Feature Learning for Speech Emotion Recognition Based on Autoencoder
    Ying, Yangwei
    Tu, Yuanwu
    Zhou, Hong
    ELECTRONICS, 2021, 10 (17)
  • [34] Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition
    Fang, Yinfeng
    Yang, Haiyang
    Zhang, Xuguang
    Liu, Han
    Tao, Bo
    FRONTIERS IN NEUROROBOTICS, 2021, 14 (14):
  • [35] A Semi-automatic Feature Fusion Model for EEG-based Emotion Recognition
    Zhang, Gaotian
    Li, Shiqian
    Wang, Jiabao
    Zhou, Yun
    Xu, Tao
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [36] EEG-based human emotion recognition using entropy as a feature extraction measure
    Patel P.
    Raghunandan R.
    Annavarapu R.N.
    Brain Informatics, 2021, 8 (01)
  • [37] An approach to EEG-based emotion recognition using combined feature extraction method
    Zhang, Yong
    Ji, Xiaomin
    Zhang, Suhua
    NEUROSCIENCE LETTERS, 2016, 633 : 152 - 157
  • [38] EEG-Based Emotion Recognition with Manifold Regularized Extreme Learning Machine
    Peng, Yong
    Zhu, Jia-Yi
    Zheng, Wei-Long
    Lu, Bao-Liang
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 974 - 977
  • [39] Singular Learning of Deep Multilayer Perceptrons for EEG-Based Emotion Recognition
    Guo, Weili
    Li, Guangyu
    Lu, Jianfeng
    Yang, Jian
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [40] A review on semi-supervised learning for EEG-based emotion recognition
    Qiu, Sen
    Chen, Yongtao
    Yang, Yulin
    Wang, Pengfei
    Wang, Zhelong
    Zhao, Hongyu
    Kang, Yuntong
    Nie, Ruicheng
    INFORMATION FUSION, 2024, 104