ABSOLUTE FLUX CALIBRATION OF THE IRAC INSTRUMENT ON THE SPITZER SPACE TELESCOPE USING HUBBLE SPACE TELESCOPE FLUX STANDARDS

被引:31
|
作者
Bohlin, R. C. [1 ]
Gordon, K. D. [1 ]
Rieke, G. H. [2 ]
Ardila, D. [3 ]
Carey, S. [4 ]
Deustua, S. [1 ]
Engelbracht, C. [2 ]
Ferguson, H. C. [1 ]
Flanagan, K. [1 ]
Kalirai, J. [1 ]
Meixner, M. [1 ]
Noriega-Crespo, A. [4 ]
Su, K. Y. L. [2 ]
Tremblay, P. -E. [5 ]
机构
[1] Space Telescope Sci Inst, Baltimore, MD 21218 USA
[2] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
[3] NASA, CALTECH, Herschel Sci Ctr, Pasadena, CA 91125 USA
[4] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA
[5] Univ Montreal, Montreal, PQ H3C 3J7, Canada
来源
ASTRONOMICAL JOURNAL | 2011年 / 141卷 / 05期
关键词
stars: atmospheres; stars: fundamental parameters; techniques: spectroscopic; SPECTRAL IRRADIANCE CALIBRATION; MULTIBAND IMAGING PHOTOMETER; INFRARED ARRAY CAMERA; MODEL ATMOSPHERES; SPECTROSCOPIC ANALYSIS; FAR-ULTRAVIOLET; WHITE-DWARFS; STARS; LINE; SPECTROPHOTOMETRY;
D O I
10.1088/0004-6256/141/5/173
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of similar to 2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 mu m band-4 fluxes of Rieke et al. are about 1.5% +/- 2% higher than those of Reach et al. and are also in agreement with our 8 mu m result.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The Hubble Space Telescope
    Macchetto, FD
    IMTC/99: PROCEEDINGS OF THE 16TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS. 1-3, 1999, : 966 - 970
  • [22] THE HUBBLE SPACE TELESCOPE
    BAHCALL, NA
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1986, 470 : 331 - 337
  • [23] THE HUBBLE SPACE TELESCOPE
    GIACCONI, R
    OMNI, 1989, 11 (11) : 20 - 20
  • [24] The advantages of using the Hubble Space Telescope
    Evans, LK
    SPACE 2000, PROCEEDINGS, 2000, : 958 - 962
  • [25] Monitoring of the Wavelength Calibration Lamps for the Hubble Space Telescope
    Pascucci, Ilaria
    Proffitt, Charles
    Ghavamian, Parviz
    Sahnow, David
    Oliveira, Cristina
    Aloisi, Alessandra
    Keyes, Tony
    Penton, Steven V.
    SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2010, 7731
  • [26] From the hubble space telescope to the James WEBB space telescope
    Panagia, N
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (6-8): : 897 - 907
  • [27] Astrometry of the ω Centauri Hubble Space Telescope calibration field
    Mighell, KJ
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2000, 112 (774) : 1089 - 1095
  • [28] New design for the Hubble Space Telescope calibration database
    Cox, C
    Lubow, S
    Tullos, C
    OBSERVATORY OPERATIONS TO OPTIMIZE SCIENTIFIC RETURN, 1998, 3349 : 218 - 223
  • [29] The spectral photon flux of the radiometric calibration spectral source for the NIRSpec instrument of the James Webb Space Telescope
    Physikalisch-Technische Bundesanstalt , Berlin, Germany
    不详
    不详
    Metrologia, 4 (S207-S212):
  • [30] The spectral photon flux of the radiometric calibration spectral source for the NIRSpec instrument of the James Webb Space Telescope
    Taubert, R. D.
    Monte, C.
    Baltruschat, C.
    Schirmacher, A.
    Gutschwager, B.
    Hartmann, J.
    Hollandt, J.
    Kochems, D.
    Kuechel, C.
    Plate, M. te
    METROLOGIA, 2009, 46 (04) : S207 - S212