Unsupervised Classification of SAR Images Using Markov Random Fields and GI0 Model

被引:18
|
作者
Picco, Mery [1 ]
Palacio, Gabriela [1 ]
机构
[1] Univ Nacl Rio Cuarto, RA-5800 Rio Cuarto, Argentina
关键词
Classification; Markovian segmentation; statistical model; synthetic aperture radar (SAR); DISTRIBUTIONS; ESTIMATORS;
D O I
10.1109/LGRS.2010.2073678
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter deals with synthetic aperture radar (SAR) data classification in an unsupervised way. Many models have been proposed to fit SAR data (K, Weibull, Log-normal, etc.), but none of them are flexible enough to model all kinds of surfaces (particularly when there are urban areas present in the image). Our main contribution is the application of a statistical model G(0) in a classification process which is shown to be able to model areas with different degrees of heterogeneity. The quality of the classification obtained by mixing this model and a Markovian segmentation is high. We use an iterative conditional estimation method to estimate the parameters of the proposed model.
引用
收藏
页码:350 / 353
页数:4
相关论文
共 50 条
  • [1] Markovian classification of SAR images using gI0 model
    Picco, Mery
    Palacio, Gabriela
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2009, 23 (02) : 166 - 178
  • [2] Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    Fjortoft, R
    Delignon, Y
    Pieczynski, W
    Sigelle, M
    Tupin, F
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03): : 675 - 686
  • [3] CLASSIFICATION OF MULTITEMPORAL SAR IMAGES USING CONVOLUTIONAL NEURAL NETWORKS AND MARKOV RANDOM FIELDS
    Danilla, Carolyne
    Persello, Claudio
    Tolpekin, Valentyn
    Bergado, John Ray
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2231 - 2234
  • [4] Non-Uniform Markov Random Fields for Classification of SAR Images
    Lobry, Sylvain
    Tupin, Florence
    Fjortoft, Roger
    [J]. 11TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2016), 2016, : 677 - 680
  • [5] Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model
    Zhang, Peng
    Li, Ming
    Wu, Yan
    Gan, Lu
    Liu, Ming
    Wang, Fan
    Liu, Gaofeng
    [J]. PATTERN RECOGNITION, 2012, 45 (11) : 4018 - 4033
  • [6] SAR Image Classification Using Markov Random Fields with Deep Learning
    Yang, Xiangyu
    Yang, Xuezhi
    Zhang, Chunju
    Wang, Jun
    [J]. REMOTE SENSING, 2023, 15 (03)
  • [7] Region Discrimination in SAR Imagery using the Geodesic Distance between GI0 Distributions
    Torres, Jose Naranjo
    Ciambini, Juliana
    Frery, Alejandro C.
    [J]. 2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 573 - 577
  • [8] UNSUPERVISED SEGMENTATION OF NOISY AND TEXTURED IMAGES USING MARKOV RANDOM-FIELDS
    WON, CS
    DERIN, H
    [J]. CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1992, 54 (04): : 308 - 328
  • [9] Unsupervised segmentation of SAR images using triplet Markov fields and Fisher noise distributions
    Benboudjema, Dalila
    Tupin, Florence
    Pieczynski, Wojciech
    Sigelle, Marc
    Nicolas, Jean-Marie
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3891 - +
  • [10] Unsupervised SAR Image Segmentation Using Gradient Triplet Markov Fields Model
    Wang, Fan
    Wu, Yan
    Zhang, Peng
    Li, Ming
    Zhang, Qingjun
    [J]. 2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 561 - 566