Constructive axiomatizations of plane absolute, Euclidean and hyperbolic geometry

被引:0
|
作者
Pambuccian, V [1 ]
机构
[1] Arizona State Univ W, Dept Integrat Studies, Phoenix, AZ 85069 USA
关键词
absolute geometry; hyperbolic geometry; Euclidean geometry; constructive axiomatization; quantifier-free axiomatization;
D O I
10.1002/1521-3870(200101)47:1<129::AID-MALQ129>3.0.CO;2-B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide quantifier-free, constructive axiomatizations for 2-dimensional absolute, Euclidean, and hyperbolic geometry. The main novelty consists in the first-order languages in which the axiom systems are formulated. Mathematics Subject Classification: 03F65, 51F05, 51M05, 51M10, 03B30.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [31] Formalization of the arithmetization of Euclidean plane geometry and applications
    Boutry, Pierre
    Braun, Gabriel
    Narboux, Julien
    JOURNAL OF SYMBOLIC COMPUTATION, 2019, 90 : 149 - 168
  • [32] On Automating Triangle Constructions in Absolute and Hyperbolic Geometry
    Marinkovi, Vesna
    Sukilovic, Tijana .
    Maric, Filip
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (352): : 14 - 26
  • [33] An explanation for absolute geometry in the plane.
    Bachmann, F
    MATHEMATISCHE ANNALEN, 1937, 113 : 424 - 451
  • [34] Weighted distortion in conformal mapping in euclidean, hyperbolic and elliptic geometry
    Kraus, D
    Roth, O
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2006, 31 (01) : 111 - 130
  • [35] Joint hyperbolic and Euclidean geometry contrastive graph neural networks
    Xu, Xiaoyu
    Pang, Guansong
    Wu, Di
    Shang, Mingsheng
    INFORMATION SCIENCES, 2022, 609 : 799 - 815
  • [37] The distribution of dilating sets: a journey from Euclidean to hyperbolic geometry
    Corso, Emilio
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, : 57 - 97
  • [38] Gauss and the definition of the plane concept in Euclidean elementary geometry
    Zormbala, K
    HISTORIA MATHEMATICA, 1996, 23 (04) : 418 - 436
  • [39] NETS OF CONICS IN EUCLIDEAN PLANE AND AN ASSOCIATED REPRESENTATIONAL GEOMETRY
    BLUM, R
    GUINAND, AP
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (04): : 479 - 495
  • [40] CIRCLE PACKINGS INTO CONVEX DOMAINS OF THE EUCLIDEAN AND HYPERBOLIC PLANE AND THE SPHERE
    BEZDEK, K
    GEOMETRIAE DEDICATA, 1986, 21 (03) : 249 - 255