Stability Problem of Canard-Cycles on a Finite Interval

被引:1
|
作者
Chumakov, Gennadii A. [1 ]
Chumakova, Nataliya A. [2 ]
Lashina, Elena A. [2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Boreskov Inst Catalysis, Novosibirsk, Russia
关键词
nonlinear systems; numerical simulation; stability; chemical kinetics; canard solution;
D O I
10.1063/1.3498402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed study of two-variable mathematical model of a heterogeneous catalytic reaction is presented with special attention to the stability problem of canard-cycles on a finite interval. Our analysis of the global error behavior in a long-time numerical integration shows that a high sensitive dependence on the initial conditions appears due to the existence of a shower-type bundle of trajectories which is formed by stable and unstable canard solutions.
引用
收藏
页码:2181 / +
页数:2
相关论文
共 50 条
  • [1] On estimation of the global error of numerical solution on canard-cycles
    Chumakov, G. A.
    Lashina, E. A.
    Chumakova, N. A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 116 : 59 - 74
  • [2] ON A STATEMENT OF A STABILITY PROBLEM ON A FINITE INTERVAL
    ABGARIAN, KA
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1979, 43 (01): : 185 - 188
  • [3] Canard Cycles of Finite Codimension with Two Breaking Parameters
    Lylia Mamouhdi
    Robert Roussarie
    [J]. Qualitative Theory of Dynamical Systems, 2012, 11 : 167 - 198
  • [4] Canard Cycles of Finite Codimension with Two Breaking Parameters
    Mamouhdi, Lylia
    Roussarie, Robert
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (01) : 167 - 198
  • [5] Erratum to: Canard Cycles of Finite Codimension with Two Breaking Parameters
    Lilia Mahmoudi
    Robert Roussarie
    [J]. Qualitative Theory of Dynamical Systems, 2014, 13 : 383 - 383
  • [6] Stability Problem for Singular Dirac Equation System on Finite Interval
    Ercan, Ahu
    Panakhov, Etibar
    [J]. ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [7] STABILITY OF THE INVERSE STURM-LIOUVILLE PROBLEM FOR A FINITE INTERVAL
    ALEXEEV, AA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1986, 287 (01): : 11 - 13
  • [8] A STABILITY RESULT FOR AN INVERSE PROBLEM WITH INTEGRODIFFERENTIAL OPERATOR ON A FINITE INTERVAL
    Mosazadeh, Seyfollah
    Koyunbakan, Hikmet
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2020, 32 (01) : 77 - 87
  • [9] Controlling Canard Cycles
    Hildeberto Jardón-Kojakhmetov
    Christian Kuehn
    [J]. Journal of Dynamical and Control Systems, 2022, 28 : 517 - 544
  • [10] BIRTH OF CANARD CYCLES
    Dumortier, Freddy
    Roussarie, Robert
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (04): : 723 - 781