Document mining using graph neural network

被引:0
|
作者
Yong, S. L. [1 ]
Hagenbuchner, M. [1 ]
Tsoi, A. C. [2 ]
Scarselli, F. [3 ]
Gori, M. [3 ]
机构
[1] Univ Wollongong, Wollongong, NSW 2500, Australia
[2] Monash Univ, Melbourne, Vic 3800, Australia
[3] Univ Siena, Siena, Italy
来源
COMPARATIVE EVALUATION OF XML INFORMATION RETRIEVAL SYSTEMS | 2007年 / 4518卷
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Graph Neural Network is a relatively new machine learning method capable of encoding data as well as relationships between data elements. This paper applies the Graph Neural Network for the first time to a given learning task at an international competition on the classification of semi-structured documents. Within this setting, the Graph Neural Network is trained to encode and process a relatively large set of XML formatted documents. It will be shown that the performance using the Graph Neural Network approach significantly outperforms the results submitted by the best competitor.
引用
收藏
页码:458 / 472
页数:15
相关论文
共 50 条
  • [11] Network Anomaly Detection Using a Graph Neural Network
    Kisanga, Patrice
    Woungang, Isaac
    Traore, Issa
    Carvalho, Glaucio H. S.
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 61 - 65
  • [12] Resolution of Network Topology using Fast Graph Mining
    Kamamura, Shohei
    Fukuda, Aki
    Yamamoto, Hiroshi
    Date, Hiroki
    Hayashi, Rie
    Uematsu, Yoshihiko
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [13] Multi-view Hierarchical Graph Neural Network for Argumentation Mining
    Sun, Yang
    Bao, Jianzhu
    Tu, Geng
    Liang, Bin
    Yang, Min
    Xu, Ruifeng
    COGNITIVE COMPUTATION, 2025, 17 (01)
  • [14] Spatiotemporal Interpolation Using Graph Neural Network
    Yao, Shiqi
    Huang, Bo
    ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS, 2023, 113 (08) : 1856 - 1877
  • [15] Quantum probability-inspired graph neural network for document representation and classification
    Yan, Peng
    Li, Linjing
    Jin, Miaotianzi
    Zeng, Daniel
    NEUROCOMPUTING, 2021, 445 : 276 - 286
  • [16] Topic Modeling Revisited: A Document Graph-based Neural Network Perspective
    Shen, Dazhong
    Qin, Chuan
    Wang, Chao
    Dong, Zheng
    Zhu, Hengshu
    Xiong, Hui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [17] Document Graph for Neural Machine Translation
    Xu, Mingzhou
    Li, Liangyou
    Wong, Derek F.
    Liu, Qun
    Chao, Lidia S.
    EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings, 2021, : 8435 - 8448
  • [18] Topic structure mining for document sets using graph-based analysis
    Toda, Hiroyuki
    Kataoka, Ryoji
    Kitagawa, Hiroyuki
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2006, 4080 : 327 - 337
  • [19] Document Graph for Neural Machine Translation
    Xu, Mingzhou
    Li, Liangyou
    Wong, Derek F.
    Liu, Qun
    Chao, Lidia S.
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8435 - 8448
  • [20] Automatic Document Classification Using Convolutional Neural Network
    Sun, Xingping
    Li, Yibing
    Kang, Hongwei
    Shen, Yong
    2018 INTERNATIONAL SEMINAR ON COMPUTER SCIENCE AND ENGINEERING TECHNOLOGY (SCSET 2018), 2019, 1176