Physics-informed machine learning modeling for predictive control using noisy data

被引:32
|
作者
Alhajeri, Mohammed S. [1 ,3 ]
Abdullah, Fahim [1 ]
Wu, Zhe [4 ]
Christofides, Panagiotis D. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[3] Kuwait Univ, Dept Chem Engn, POB 5969, Safat 13060, Kuwait
[4] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
来源
CHEMICAL ENGINEERING RESEARCH & DESIGN | 2022年 / 186卷
基金
美国国家科学基金会;
关键词
Process control; Model predictive control; Nonlinear processes; Machine Learning; Recurrent neural networks; Aspen Plus Dynamics; STATE ESTIMATION;
D O I
10.1016/j.cherd.2022.07.035
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Due to the occurrence of over-fitting at the learning phase, the modeling of chemical processes via artificial neural networks (ANN) by using corrupted data (i.e., noisy data) is an ongoing challenge. Therefore, this work investigates the effect of both Gaussian and non-Gaussian noise on the performance of process-structure based recurrent neural networks (RNN) models, which take the form of partially-connected RNN models in this work, that are used to approximate a class of multi-input-multi-outputs nonlinear sys-tems. Furthermore, two different techniques, specifically Monte Carlo dropout and co -teaching, are utilized in the development of partially-connected RNN models. These two techniques are employed to reduce the over-fitting in ANNs when noisy data is used in the training process and, hence, to improve the open-loop accuracy as well as the closed-loop performance under a Lyapunov-based model predictive controller (MPC). Aspen Plus Dynamics, a well-known high-fidelity process simulator, is used to simulate a large-scale chemical process application in order to demonstrate the anticipated improvements in both open-loop approximation and closed-loop controller performance in the presence of Gaussian and non-Gaussian noise in the data set using physics-informed RNNs.(c) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:34 / 49
页数:16
相关论文
共 50 条
  • [41] Physics-informed machine learning for reduced-order modeling of nonlinear problems
    Chen, Wenqian
    Wang, Qian
    Hesthaven, Jan S.
    Zhang, Chuhua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [42] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [43] Physics-informed machine learning for inorganic scintillator discovery
    Pilania, G.
    McClellan, K. J.
    Stanek, C. R.
    Uberuaga, B. P.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [44] Probabilistic physics-informed machine learning for dynamic systems
    Subramanian, Abhinav
    Mahadevan, Sankaran
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [45] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [46] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [47] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [48] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [49] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [50] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647