Spatial-Temporal Recurrent Neural Network for Emotion Recognition

被引:233
|
作者
Zhang, Tong [1 ,2 ]
Zheng, Wenming [3 ]
Cui, Zhen [4 ]
Zong, Yuan [3 ]
Li, Yang [1 ,2 ]
机构
[1] Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Informat Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ, Res Ctr Learning Sci, Minist Educ, Key Lab Child Dev & Learning Sci, Nanjing 210096, Jiangsu, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalogram (EEG) emotion recognition; emotion recognition; facial expression recognition; spatial- temporal recurrent neural network (STRNN);
D O I
10.1109/TCYB.2017.2788081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel deep learning framework, called spatial-temporal recurrent neural network (STRNN), to integrate the feature learning from both spatial and temporal information of signal sources into a unified spatial-temporal dependency model. In STRNN, to capture those spatially co-occurrent variations of human emotions, a multidirectional recurrent neural network (RNN) layer is employed to capture long-range contextual cues by traversing the spatial regions of each temporal slice along different directions. Then a hi-directional temporal RNN layer is further used to learn the discriminative features characterizing the temporal dependencies of the sequences, where sequences are produced from the spatial RNN layer. To further select those salient regions with more discriminative ability for emotion recognition, we impose sparse projection onto those hidden states of spatial and temporal domains to improve the model discriminant ability. Consequently, the proposed two-layer RNN model provides an effective way to make use of both spatial and temporal dependencies of the input signals for emotion recognition. Experimental results on the public emotion datasets of electroencephalogram and facial expression demonstrate the proposed STRNN method is more competitive over those state-of-the-art methods.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 50 条
  • [31] Spatial-Temporal Interleaved Network for Efficient Action Recognition
    Jiang, Shengqin
    Zhang, Haokui
    Qi, Yuankai
    Liu, Qingshan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024,
  • [32] EEG-Based Emotion Recognition Using Spatial-Temporal Connectivity
    Chu, Wenhao
    Fu, Baole
    Xia, Yuxiao
    Liu, Yinhua
    IEEE ACCESS, 2023, 11 : 92496 - 92504
  • [33] Eye Tracking and Emotion Recognition Using Multiple Spatial-Temporal Networks
    Setianto, Eprian Junan
    Djamal, Esmeralda Contessa
    Nugraha, Fikri
    Kasyidi, Fatan
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 18 - 23
  • [34] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2023, : 448 - 458
  • [35] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    arXiv, 2023,
  • [36] Spatial-temporal dynamic semantic graph neural network
    Rui Zhang
    Fei Xie
    Rui Sun
    Lei Huang
    Xixiang Liu
    Jianjun Shi
    Neural Computing and Applications, 2022, 34 : 16655 - 16668
  • [37] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 448 - 458
  • [38] Spatial-temporal dynamic semantic graph neural network
    Zhang, Rui
    Xie, Fei
    Sun, Rui
    Huang, Lei
    Liu, Xixiang
    Shi, Jianjun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16655 - 16668
  • [39] STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
    Li, Jingcong
    Pan, Weijian
    Huang, Haiyun
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [40] Bidirectional spatial-temporal traffic data imputation via graph attention recurrent neural network
    Shen, Guojiang
    Zhou, Wenfeng
    Zhang, Wenyi
    Liu, Nali
    Liu, Zhi
    Kong, Xiangjie
    NEUROCOMPUTING, 2023, 531 : 151 - 162