LINEAR WEINGARTEN SURFACES FOLIATED BY CIRCLES IN MINKOWSKI SPACE

被引:0
|
作者
Kalkan, Ozgur Boyacioglu [2 ]
Lopez, Rafael [1 ]
Saglam, Derya [2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Afyon Kocatepe Univ, Dept Math, TR-03200 Afyon, Turkey
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 05期
关键词
Minkowski space; Spacelike surface; Weingarten surface; MAXIMAL SURFACES; CURVATURE; REPRESENTATION; 3-SPACE; L-3;
D O I
10.11650/twjm/1500406413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study spacelike surfaces in Minkowski space E(1)(3) foliated by pieces of circles that satisfy a linear Weingarten condition of type aH + bK = c, where a, b and c are constants and H and K denote the mean curvature and the Gauss curvature respectively. We show that such surfaces must be surfaces of revolution or surfaces with constant mean curvature H = 0 or surfaces with constant Gauss curvature K = 0.
引用
收藏
页码:1897 / 1917
页数:21
相关论文
共 50 条
  • [21] A conformal representation for linear Weingarten surfaces in the de Sitter space
    Aledo, Juan A.
    Espinar, Jose M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (08) : 1669 - 1677
  • [22] The stability of closed linear Weingarten spacelike hypersurfaces in foliated spacetimes
    Han, Hyelim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (10)
  • [23] DISCRETE FLAT SURFACES AND LINEAR WEINGARTEN SURFACES IN HYPERBOLIC 3-SPACE
    Hoffmann, T.
    Rossman, W.
    Sasaki, T.
    Yoshida, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) : 5605 - 5644
  • [24] CHANNEL LINEAR WEINGARTEN SURFACES
    Hertrich-Jeromin, Udo
    Mundilova, Klara
    Tjaden, Ekkehard-Heinrich
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2015, 40 : 25 - 33
  • [25] DISCRETE LINEAR WEINGARTEN SURFACES
    Burstall, F.
    Hertrich-Jeromin, U.
    Rossman, W.
    NAGOYA MATHEMATICAL JOURNAL, 2018, 231 : 55 - 88
  • [26] Elliptic Linear Weingarten Surfaces
    Kim, Young Ho
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (03): : 547 - 557
  • [27] MINIMAL SURFACES IN S3 FOLIATED BY CIRCLES
    Kutev, Nikolai
    Milousheva, Velichka
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) : 335 - 354
  • [28] Willmore surfaces in 3-sphere foliated by circles
    Lu, Ying
    Wang, Changping
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 701 : 221 - 244
  • [29] Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations
    Ganchev, Georgi
    Mihova, Vesselka
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (01): : 133 - 148
  • [30] Time-like linear Weingarten surfaces in Lorentzian space forms
    Zuo, Da Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1021 - 1026