A remark on the Ramanujan sums

被引:0
|
作者
Chadozeau, A [1 ]
机构
[1] Univ Bordeaux 1, Inst Math, F-33045 Talence, France
关键词
D O I
10.1016/j.crma.2005.06.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behaviour of the function A(q) = sup(x,3), vertical bar Sigma(x<n <= y) c(q)(n)vertical bar where c(q) (n) denotes the Ramanujan sum. We prove that q << A (q) << q root log(2)q and determine how sharp this estimation is.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 50 条
  • [31] REMARK ON SUMS OF SQUARES IN DYNAMICS
    STIEFEL, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1975, 26 (01): : 125 - 126
  • [32] On Ramanujan sums over the Gaussian integers
    Nowak, Werner Georg
    MATHEMATICA SLOVACA, 2013, 63 (04) : 725 - 732
  • [33] CHARACTER SUMS AND ABELIAN RAMANUJAN GRAPHS
    LI, WCW
    FENG, KQ
    JOURNAL OF NUMBER THEORY, 1992, 41 (02) : 199 - 217
  • [34] Ramanujan sums and discrete Fourier transforms
    Samadi, S
    Ahmad, MO
    Swamy, MNS
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (04) : 293 - 296
  • [35] Moments of averages of generalized Ramanujan sums
    Robles, Nicolas
    Roy, Arindam
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (02): : 433 - 461
  • [36] A REMARK ON THE DISTORTION OF TWISTED SUMS
    Suarez, Jesus
    COLLOQUIUM MATHEMATICUM, 2024,
  • [37] Remark on the computation of mode sums
    Allen, TJ
    Olsson, MG
    Schmidt, JR
    PHYSICAL REVIEW D, 2000, 62 (06): : 0660061 - 0660068
  • [38] Ramanujan sums are nearly orthogonal to powers
    Alkan, Emre
    JOURNAL OF NUMBER THEORY, 2014, 140 : 147 - 168
  • [39] A generalization of regular convolutions and Ramanujan sums
    Burnett, Joseph Vade
    Osterman, Otto Vaughn
    RAMANUJAN JOURNAL, 2021, 55 (02): : 437 - 445
  • [40] Ramanujan sums and almost periodic functions
    Kac, M
    Van Kampen, ER
    Wintner, A
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 107 - 114