A rapid estimation of the average size of the core-shell nanoparticles by calcination and modelling

被引:0
|
作者
Lepadatu, C. I. [1 ]
Culita, D. C. [1 ]
Patron, L. [1 ]
机构
[1] Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania
来源
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS | 2008年 / 10卷 / 03期
关键词
magnetite; amino acid; nanoparticle; average size; calcination; modelling;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A rapid and simple method for the evaluation of the average size of the hard core - shell nanoparticles in a sample is presented. It is based on the combination of two procedures (calcination and modelling) easy to perform. The application to a series of magnetite - amino acid nanoparticles (amino acid: aspartic, glutamic, proline, tryptophan, arginine) leads to satisfactory values for the average size of the nanoparticles if they are compared with those experimentally determined by Transmission Electron Microscopy.
引用
收藏
页码:512 / 514
页数:3
相关论文
共 50 条
  • [31] Size-dependent oxidation in iron/iron oxide core-shell nanoparticles
    Signorini, L
    Pasquini, L
    Savini, L
    Carboni, R
    Boscherini, F
    Bonetti, E
    Giglia, A
    Pedio, M
    Mahne, N
    Nannarone, S
    PHYSICAL REVIEW B, 2003, 68 (19)
  • [32] Determination of Particle Size, Core and Shell Size Distributions of Core-Shell Particles by Analytical Ultracentrifugation
    Schmidt, Thomas
    Linders, Jurgen
    Mayer, Christian
    Coelfen, Helmut
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2021, 38 (10)
  • [33] Core size matters! High Raman enhancing core tunable Au/Ag bimetallic core-shell nanoparticles
    Diptiranjan Paital
    Tapasi Sen
    Amitava Patra
    Krishna Kanta Haldar
    Gold Bulletin, 2017, 50 : 313 - 317
  • [34] Core size matters! High Raman enhancing core tunable Au/Ag bimetallic core-shell nanoparticles
    Paital, Diptiranjan
    Sen, Tapasi
    Patra, Amitava
    Haldar, Krishna Kanta
    GOLD BULLETIN, 2017, 50 (04): : 313 - 317
  • [35] Strain effects in core-shell PtCo nanoparticles: a comparison of experimental observations and computational modelling
    Ellaby, Tom
    Varambhia, Aakash
    Luo, Xiaonan
    Briquet, Ludovic
    Sarwar, Misbah
    Ozkaya, Dogan
    Thompsett, David
    Nellist, Peter D.
    Skylaris, Chris-Kriton
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (42) : 24784 - 24795
  • [36] Modelling core-shell plasmonic nanoparticles as homogenous systems: An effective refractive index approach
    Swaroop, Abhimanyu
    Pujari, Arvind
    Thomas, Tiju
    MATERIALIA, 2021, 19
  • [37] Size and shape evolution of core-shell nanocrystals
    Zhong, CJ
    Zhang, WX
    Leibowitz, FL
    Eichelberger, HH
    CHEMICAL COMMUNICATIONS, 1999, (13) : 1211 - 1212
  • [38] Molecular imprinting of polymeric core-shell nanoparticles
    Moral, NP
    Mayes, AG
    MOLECULARLY IMPRINTED MATERIALS-SENSORS AND OTHER DEVICES, 2002, 723 : 61 - 66
  • [39] Biomedical applications based on core-shell nanoparticles
    Wang, Kemin
    Tan, Weihong
    He, Xiaoxiao
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 717 - 719
  • [40] FRET Enhancement in Multilayer Core-Shell Nanoparticles
    Lessard-Viger, Mathieu
    Rioux, Maxime
    Rainville, Luc
    Boudreau, Denis
    NANO LETTERS, 2009, 9 (08) : 3066 - 3071