generalized game;
L-Fc-majorized correspondence;
transfer compactly open-valued;
equilibrium;
D O I:
10.1016/S0252-9602(17)30692-6
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The new classes of L-Fc-correspondences and L-Fc-majorised correspondences without open lower sections is introduced. Some existence theorems of maximal elements of the L-Fc-correspondences and the L-Fc-majorized correspondences defined on noncompact set in topological vector spaces are obtained. As applications, some existence theorems of equilibrium points for one-person games, qualitative games and generalized games with the L-Fc-majorized correspondences defined on noncompact strategy sets in topological vector spaces are also given. These theorems improve and generalize several known results in recent literature.
机构:
Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R China
Ding, XP
Xia, FQ
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R China
机构:
Univ Napoli Parthenope, Dipartimento Studi Aziendali & Quantitativi, I-80132 Naples, Italy
Univ Naples Federico II, CSEF, Naples, ItalyUniv Napoli Parthenope, Dipartimento Studi Aziendali & Quantitativi, I-80132 Naples, Italy
De Marco, Giuseppe
Romaniello, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples 2, Dipartimento Econ, I-81043 Corso Gran Priorato Di M, Capua, ItalyUniv Napoli Parthenope, Dipartimento Studi Aziendali & Quantitativi, I-80132 Naples, Italy