A bias-reducing strategy in profiling small RNAs using Solexa

被引:35
|
作者
Sun, Guihua [1 ]
Wu, Xiwei
Wang, Jinhui
Li, Haiqing
Li, Xuejun
Gao, Hanlin
Rossi, John [2 ]
Yen, Yun [1 ]
机构
[1] Beckman Res Inst City Hope, Dept Mol Pharmacol, Duarte, CA 91010 USA
[2] Beckman Res Inst City Hope, Dept Mol & Cellular Biol, Duarte, CA 91010 USA
关键词
microRNA; deep sequencing; Solexa; small RNA; BIOGENESIS; MICRORNAS; MIRNA; IDENTIFICATION; EXPRESSION;
D O I
10.1261/rna.028621.111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small RNAs (smRNAs) encompass several different classes of short noncoding RNAs. Progress in smRNA research and applications has coincided with the advance of techniques to detect them. Next-generation sequencing technologies are becoming the preferred smRNA profiling method because of their high-throughput capacity and digitized results. In our small RNA profiling study using Solexa, we observed serious biases introduced by the 5' adaptors in small RNA species coverage and abundance; therefore, the results cannot reveal the accurate composition of the small RNAome. We found that the profiling results can be significantly optimized by using an index pool of 64 customized 5' adaptors. This pool of 64 adaptors can be further reduced to four smaller index pools, each containing 16 adaptors, to minimize profiling bias and facilitate multiplexing. It is plausible that this type of bias exists in other deep-sequencing technologies, and adaptor pooling could be an easy work-around solution to reveal the "true" small RNAome.
引用
收藏
页码:2256 / 2262
页数:7
相关论文
共 50 条
  • [21] Comprehensive profiling of rRNA-derived small RNAs in Arabidopsis thaliana using rsRNAfinder pipeline
    Kalakoti, Garima
    Vivek, A. T.
    Kamboj, Anshul
    Singh, Ajeet
    Chakraborty, Srija
    Kumar, Shailesh
    METHODSX, 2024, 12
  • [22] High-resolution profiling and discovery of planarian small RNAs
    Friedlaender, Marc R.
    Adamidi, Catherine
    Han, Ting
    Lebedeva, Svetlana
    Isenbarger, Thomas A.
    Hirst, Martin
    Marra, Marco
    Nusbaum, Chad
    Lee, William L.
    Jenkin, James C.
    Alvarado, Alejandro Sanchez
    Kim, John K.
    Rajewsky, Nikolaus
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (28) : 11546 - 11551
  • [23] Cloning and expression profiling of small RNAs expressed in the mouse ovary
    Ro, Seungil
    Song, Rui
    Park, Chanjae
    Zheng, Huili
    Sanders, Kenton M.
    Yan, Wei
    RNA, 2007, 13 (12) : 2366 - 2380
  • [24] Profiling of epididymal small non-protein-coding RNAs
    Nixon, B.
    De Iuliis, G. N.
    Dun, M. D.
    Zhou, W.
    Trigg, N. A.
    Eamens, A. L.
    ANDROLOGY, 2019, 7 (05) : 669 - 680
  • [25] Identification of novel and differentially expressed micro RNAs in ovine ovary and testis tissues using Solexa sequencing and bioinformatics
    CHANG Wei-hua
    ZHANG Yong
    CHENG Zhang-rui
    ZHAO Xing-xu
    WANG Juan-hong
    MA You-ji
    HU Jun-jie
    ZHANG Quan-wei
    Journal of Integrative Agriculture, 2015, 14 (08) : 1604 - 1616
  • [26] Metabolic Labeling and Profiling of Transfer RNAs Using Macroarrays
    Emetu, Sophia
    Troiano, Morgan
    Goldmintz, Jacob
    Tomberlin, Jensen
    Grelet, Simon
    Howe, Philip H.
    Korey, Christopher
    Geslain, Renaud
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (131):
  • [27] Cloning and expression profiling of testis-expressed small RNAs.
    Yan, Wei
    BIOLOGY OF REPRODUCTION, 2007, : 65 - 65
  • [28] A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae
    Rossi, Ciro C.
    Bosse, Janine T.
    Li, Yanwen
    Witney, Adam A.
    Gould, Kate A.
    Langford, Paul R.
    Bazzolli, Denise M. S.
    RNA, 2016, 22 (09) : 1373 - 1385
  • [29] Reducing bias using propensity score matching
    Morgan, Charity J.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2018, 25 (02) : 404 - 406
  • [30] Reducing bias using propensity score matching
    Charity J. Morgan
    Journal of Nuclear Cardiology, 2018, 25 : 404 - 406