A Suite of Computationally Expensive Shape Optimisation Problems Using Computational Fluid Dynamics

被引:21
|
作者
Daniels, Steven J. [1 ]
Rahat, Alma A. M. [1 ]
Everson, Richard M. [1 ]
Tabor, Gavin R. [1 ]
Fieldsend, Jonathan E. [1 ]
机构
[1] Univ Exeter, Exeter, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-319-99259-4_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many product design and development applications, Computational Fluid Dynamics (CFD) has become a useful tool for analysis. This is particularly because of the accuracy of CFD simulations in predicting the important flow attributes for a given design. On occasions when design optimisation is applied to real-world engineering problems using CFD, the implementation may not be available for examination. As such, in both the CFD and optimisation communities, there is a need for a set of computationally expensive benchmark test problems for design optimisation using CFD. In this paper, we present a suite of three computationally expensive real-world problems observed in different fields of engineering. We have developed Python software capable of automatically constructing geometries from a given decision vector, running appropriate simulations using the CFD code OpenFOAM, and returning the computed objective values. Thus, users may easily evaluate a decision vector and perform optimisation of these design problems using their optimisation methods without developing custom CFD code. For comparison, we provide the objective values for the base geometries and typical computation times for the test cases presented here.
引用
收藏
页码:296 / 307
页数:12
相关论文
共 50 条
  • [1] Optimisation of the surfboard fin shape using computational fluid dynamics and genetic algorithms
    Sakellariou, Konstantinos
    Rana, Zeeshan A.
    Jenkins, Karl W.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART P-JOURNAL OF SPORTS ENGINEERING AND TECHNOLOGY, 2017, 231 (04) : 344 - 354
  • [2] DESIGN OPTIMISATION USING COMPUTATIONAL FLUID DYNAMICS
    Green, Johnathan
    [J]. Naval Architect, 2023, : 50 - 53
  • [3] Evolutionary optimization for computationally expensive problems using Gaussian processes
    El-Beltagy, MA
    Keane, AJ
    [J]. IC-AI'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS I-III, 2001, : 708 - 714
  • [4] Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics
    Daniels, S. J.
    Rahat, A. A. M.
    Tabor, G. R.
    Fieldsend, J. E.
    Everson, R. M.
    [J]. RENEWABLE ENERGY, 2020, 160 (160) : 112 - 126
  • [5] Multipoint shape optimisation of an automotive radial compressor using a coupled computational fluid dynamics and genetic algorithm approach
    Tuchler, Stefan
    Chen, Zhihang
    Copeland, Colin D.
    [J]. ENERGY, 2018, 165 : 543 - 561
  • [6] COMPUTATIONAL FLUID DYNAMICS OPTIMISATION OF A PELLET BURNER
    Westerlund, Lars B.
    Hermansson, Roger L.
    Cervantes, Michel J.
    [J]. THERMAL SCIENCE, 2012, 16 (04): : 1175 - 1186
  • [7] Shape optimization in ship hydrodynamics using computational fluid dynamics
    Campana, Emilio F.
    Peri, Daniele
    Tahara, Yusuke
    Stern, Frederick
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 634 - 651
  • [8] Shape Optimization of Vertical Profiler using Computational Fluid Dynamics
    Kishor, Anand
    Thangavel, C.
    Muthuvel, P.
    Sudhakar, Tata
    [J]. 2015 IEEE UNDERWATER TECHNOLOGY (UT), 2015,
  • [9] Robust optimisation of computationally expensive models using adaptive multi-fidelity emulation
    Ellison, M.
    DiazDela, F. A.
    Ince, N. Z.
    Willetts, M.
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 100 : 92 - 106
  • [10] Robust optimisation of computationally expensive models using adaptive multi-fidelity emulation
    Ellison, M.
    DiazDelaO, F.A.
    Ince, N.Z.
    Willetts, M.
    [J]. Applied Mathematical Modelling, 2021, 100 : 92 - 106