On the distribution of consecutive square-free primitive roots modulo p

被引:2
|
作者
Liu, Huaning [1 ]
Dong, Hui [1 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
square-free; primitive root; square sieve; character sum; NUMBERS;
D O I
10.1007/s10587-015-0194-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A positive integer n is called a square-free number if it is not divisible by a perfect square except 1. Let p be an odd prime. For n with (n, p) = 1, the smallest positive integer f such that n (f) a parts per thousand 1 (mod p) is called the exponent of n modulo p. If the exponent of n modulo p is p - 1, then n is called a primitive root mod p. Let A(n) be the characteristic function of the square-free primitive roots modulo p. In this paper we study the distribution Sigma(n <= x) A(n)A(n+1), and give an asymptotic formula by using properties of character sums.
引用
收藏
页码:555 / 564
页数:10
相关论文
共 50 条