Best Arm Identification in Graphical Bilinear Bandits

被引:0
|
作者
Rizk, Geovani [1 ,2 ]
Thomas, Albert [2 ]
Colin, Igor [2 ]
Laraki, Rida [1 ,3 ]
Chevaleyre, Yann [1 ]
机构
[1] PSL Univ Paris Dauphine, CNRS, LAMSADE, Paris, France
[2] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
[3] Univ Liverpool, Liverpool, Merseyside, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new graphical bilinear bandit problem where a learner (or a central entity) allocates arms to the nodes of a graph and observes for each edge a noisy bilinear reward representing the interaction between the two end nodes. We study the best arm identification problem in which the learner wants to find the graph allocation maximizing the sum of the bilinear rewards. By efficiently exploiting the geometry of this bandit problem, we propose a decentralized allocation strategy based on random sampling with theoretical guarantees. In particular, we characterize the influence of the graph structure (e.g. star, complete or circle) on the convergence rate and propose empirical experiments that confirm this dependency.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Model-Based Best Arm Identification for Decreasing Bandits
    Takemori, Sho
    Umeda, Yuhei
    Gopalan, Aditya
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [12] Best Arm Identification in Linear Bandits with Linear Dimension Dependency
    Tao, Chao
    Blanco, Saul A.
    Zhou, Yuan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [13] Secure Best Arm Identification in Multi-armed Bandits
    Ciucanu, Radu
    Lafourcade, Pascal
    Lombard-Platet, Marius
    Soare, Marta
    [J]. INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2019, 2019, 11879 : 152 - 171
  • [14] Best arm identification in multi-armed bandits with delayed feedback
    Grover, Aditya
    Markov, Todor
    Attia, Peter
    Jin, Norman
    Perkins, Nicholas
    Cheong, Bryan
    Chen, Michael
    Yang, Zi
    Harris, Stephen
    Chueh, William
    Ermon, Stefano
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [15] Best-Arm Identification in Correlated Multi-Armed Bandits
    Gupta S.
    Joshi G.
    Yagan O.
    [J]. IEEE Journal on Selected Areas in Information Theory, 2021, 2 (02): : 549 - 563
  • [16] SPRT-Based Efficient Best Arm Identification in Stochastic Bandits
    Mukherjee A.
    Tajer A.
    [J]. IEEE Journal on Selected Areas in Information Theory, 2023, 4 : 128 - 143
  • [17] Best Arm Identification in Restless Markov Multi-Armed Bandits
    Karthik, P. N.
    Reddy, Kota Srinivas
    Tan, Vincent Y. F.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 3240 - 3262
  • [18] Best Arm Identification for Both Stochastic and Adversarial Multi-armed Bandits
    Zhang, Hantao
    Shen, Cong
    [J]. 2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 385 - 389
  • [19] A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits
    Barrier, Antoine
    Garivier, Aurelien
    Kocak, Tomas
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [20] Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm for Stochastic Bandits with Corruptions
    Zhong, Zixin
    Cheung, Wang Chi
    Tan, Vincent Y. F.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139