Best Arm Identification in Graphical Bilinear Bandits

被引:0
|
作者
Rizk, Geovani [1 ,2 ]
Thomas, Albert [2 ]
Colin, Igor [2 ]
Laraki, Rida [1 ,3 ]
Chevaleyre, Yann [1 ]
机构
[1] PSL Univ Paris Dauphine, CNRS, LAMSADE, Paris, France
[2] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
[3] Univ Liverpool, Liverpool, Merseyside, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new graphical bilinear bandit problem where a learner (or a central entity) allocates arms to the nodes of a graph and observes for each edge a noisy bilinear reward representing the interaction between the two end nodes. We study the best arm identification problem in which the learner wants to find the graph allocation maximizing the sum of the bilinear rewards. By efficiently exploiting the geometry of this bandit problem, we propose a decentralized allocation strategy based on random sampling with theoretical guarantees. In particular, we characterize the influence of the graph structure (e.g. star, complete or circle) on the convergence rate and propose empirical experiments that confirm this dependency.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Best arm identification for contaminated bandits
    Altschuler, Jason
    Brunel, Victor-Emmanuel
    Malek, Alan
    [J]. Journal of Machine Learning Research, 2019, 20
  • [2] Best Arm Identification for Contaminated Bandits
    Altschuler, Jason
    Brunel, Victor-Emmanuel
    Malek, Alan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [3] Best Arm Identification in Spectral Bandits
    Kocak, Tomas
    Garivier, Aurelien
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2220 - 2226
  • [4] Best-Arm Identification in Linear Bandits
    Soare, Marta
    Lazaric, Alessandro
    Munos, Remi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [5] Best arm identification in generalized linear bandits
    Kazerouni, Abbas
    Wein, Lawrence M.
    [J]. OPERATIONS RESEARCH LETTERS, 2021, 49 (03) : 365 - 371
  • [6] Epsilon Best Arm Identification in Spectral Bandits
    Kocak, Tomas
    Garivier, Aurelien
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2636 - 2642
  • [7] Optimal Best-arm Identification in Linear Bandits
    Jedra, Yassir
    Proutiere, Alexandre
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [8] An α-No-Regret Algorithm For Graphical Bilinear Bandits
    Rizk, Geovani
    Colin, Igor
    Thomas, Albert
    Laraki, Rida
    Chevaleyre, Yann
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] Best Arm Identification in Sample-path Correlated Bandits
    Prakash, R. Sri
    Karamchandani, Nikhil
    Moharir, Sharayu
    [J]. 2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 7 - 12
  • [10] Optimal Best Arm Identification With Fixed Confidence in Restless Bandits
    Karthik, P.N.
    Tan, Vincent Y. F.
    Mukherjee, Arpan
    Tajer, Ali
    [J]. IEEE Transactions on Information Theory, 2024, 70 (10) : 7349 - 7384