Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution

被引:6
|
作者
Ding Yong [1 ]
Yabuta, Kozo [2 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Kwansei Gakuin Univ, Res Ctr Math Sci, Gakuen 2-1, Sanda 6691337, Japan
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
singular integrals; Triebel-Lizorkin spaces; rough kernel; surface of revolution; OPERATORS; SUBMANIFOLDS; KERNELS;
D O I
10.1007/s11425-016-5154-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundedness of the rough singular integral operator T-Omega,T-psi,T-h along a surface of revolution on the Triebel-Lizorkin space (F) over dot(p,q)(alpha) (R-n) for Omega is an element of H-1(Sn-1) and Omega is an element of L log(+)L(Sn-1) boolean OR (boolean OR(1<q<infinity) B-q((0,0)) (Sn-1)), respectively.
引用
收藏
页码:1721 / 1736
页数:16
相关论文
共 50 条