On irreducible n-ary quasigroups with reducible retracts

被引:6
|
作者
Krotov, Denis [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
D O I
10.1016/j.ejc.2007.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-ary operation Q : Sigma(n) -> Sigma is called an n-ary quasigroup of order vertical bar Sigma vertical bar if in x0 = Q(x(1), ... , x(n)) knowledge of any n elements of x(0), ... , x(n) uniquely specifies the remaining one. An n-ary quasigroup Q is permutably reducible if Q(x(1), ... , x(n)) = P(R(x(sigma(1)), ... , x(sigma(k))), x(sigma(k+1)), ... , x(sigma(n))) where P and R are (n - k + 1)-ary and k-ary quasigroups, sigma is a permutation, and 1 < k < n. For even n we construct a permutably irreducible n-ary quasigroup of order 4r such that all its retracts obtained by fixing one variable are permutably reducible. We use a partial Boolean function that satisfies similar properties. For odd n the existence of permutably irreducible n-ary quasigroups with permutably reducible (n - I)-ary retracts is an open question; however, there are nonexistence results for 5-ary and 7-ary quasigroups of order 4. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:507 / 513
页数:7
相关论文
共 50 条
  • [41] A FORTRAN N-ARY COUNTER
    KENT, W
    COMMUNICATIONS OF THE ACM, 1965, 8 (06) : 378 - &
  • [42] ON EXPONENTIATION OF N-ARY ALGEBRAS
    SLAPAL, J
    ACTA MATHEMATICA HUNGARICA, 1994, 63 (04) : 313 - 322
  • [43] AXIOMATICS OF N-ARY GROUPS
    TYUTIN, VI
    DOKLADY AKADEMII NAUK BELARUSI, 1985, 29 (08): : 691 - 693
  • [44] On Idempotent n-ary Uninorms
    Devillet, Jimmy
    Kiss, Gergely
    Marichal, Jean-Luc
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2019), 2019, 11676 : 98 - 104
  • [45] On δ-derivations of n-ary algebras
    Kaygorodov, I. B.
    IZVESTIYA MATHEMATICS, 2012, 76 (06) : 1150 - 1162
  • [46] Example of n-ary bialgebra
    Zekovic, B.
    2012 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION (DD), 2012, : 250 - 252
  • [47] (n + 1)-Ary derivations of simple n-ary algebras
    I. B. Kaygorodov
    Algebra and Logic, 2011, 50 : 470 - 471
  • [48] Soft n-Ary Subgroups
    Williams, D. R. Prince
    Saeid, Arsham Borumand
    Feng, Feng
    FUZZY INFORMATION AND ENGINEERING, 2015, 7 (03) : 291 - 304
  • [49] Fuzzy n-ary subpolygroups
    Davvaz, B.
    Corsini, P.
    Leoreanu-Fotea, V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (01) : 141 - 152
  • [50] On probabilistic n-ary hypergroups
    Zhan, Jianming
    Davvaz, Bijan
    Shum, K. P.
    INFORMATION SCIENCES, 2010, 180 (07) : 1159 - 1166