Global long-term passive microwave satellite-based retrievals of vegetation optical depth

被引:231
|
作者
Liu, Yi Y. [1 ,2 ,3 ]
de Jeu, Richard A. M. [2 ]
McCabe, Matthew F. [1 ]
Evans, Jason P. [4 ]
van Dijk, Albert I. J. M. [3 ]
机构
[1] Univ New S Wales, Sch Civil & Environm Engn, Water Res Ctr, Sydney, NSW 2052, Australia
[2] Vrije Univ Amsterdam, Fac Earth & Life Sci, Dept Hydrol & Geoenvironm Sci, NL-1081 HV Amsterdam, Netherlands
[3] CSIRO Land & Water, Black Mt Labs, Canberra, ACT 2601, Australia
[4] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia
关键词
POLARIZATION DIFFERENCE INDEX; AMSR-E; RADIOFREQUENCY INTERFERENCE; SOIL-MOISTURE; EMISSION; DATASET;
D O I
10.1029/2011GL048684
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Vegetation optical depth (VOD) retrievals from three satellite-based passive microwave instruments were merged to produce the first long-term global microwave-based vegetation product. The resulting VOD product spans more than two decades and shows seasonal cycles and interannual variations that generally correspond with those observed in the Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI). Some notable differences exist in the long-term trends: the NDVI, operating in the optical regime, is sensitive to chlorophyll abundance and photosynthetically active biomass of the leaves, whereas the microwave-based VOD is an indicator of the vegetation water content in total above-ground biomass, i.e., including wood and leaf components. Preliminary analyses indicate that the fluctuations in VOD typically correlated to precipitation variations, and that the mutually independent VOD and NDVI do not necessarily respond in identical manners. Considering both products together provides a more robust structural characterization and assessment of long-term vegetation dynamics at the global scale. Citation: Liu, Y. Y., R. A. M. de Jeu, M. F. McCabe, J. P. Evans, and A. I. J. M. van Dijk (2011), Global long-term passive microwave satellite-based retrievals of vegetation optical depth, Geophys. Res. Lett., 38, L18402, doi:10.1029/2011GL048684.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model
    Geng, Guannan
    Zhang, Qiang
    Martin, Randall V.
    van Donkelaar, Aaron
    Huo, Hong
    Che, Huizheng
    Lin, Jintai
    He, Kebin
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 166 : 262 - 270
  • [22] Reconstructing long-term global satellite-based soil moisture data using deep learning method
    Hu, Yifan
    Wang, Guojie
    Wei, Xikun
    Zhou, Feihong
    Kattel, Giri
    Amankwah, Solomon Obiri Yeboah
    Hagan, Daniel Fiifi Tawia
    Duan, Zheng
    [J]. FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [23] Development and Analysis of a Long-Term, Global, Terrestrial Land Surface Temperature Dataset Based on HIRS Satellite Retrievals
    Siemann, Amanda L.
    Coccia, Gabriele
    Pan, Ming
    Wood, Eric F.
    [J]. JOURNAL OF CLIMATE, 2016, 29 (10) : 3589 - 3606
  • [24] Estimating long-term PM10-2.5 concentrations in six US cities using satellite-based aerosol optical depth data
    Pedde, Meredith
    Kloog, Itai
    Szpiro, Adam
    Dorman, Michael
    Adar, Sara D.
    Larson, Timothy V.
    [J]. ATMOSPHERIC ENVIRONMENT, 2022, 272
  • [25] IMPROVEMENT OF LONG-TERM SNOW DEPTH PRODUCT ACCURACY FROM PASSIVE MICROWAVE SATELLITE OBSERVATIONS : A CASE STUDY WITH SNODAS DATA
    Liu, Xiaojing
    Jiang, Lingmei
    Wang, Gongxue
    Hao, Shirui
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4876 - 4879
  • [26] A Quasi-Global Evaluation System for Satellite-Based Surface Soil Moisture Retrievals
    Crow, Wade T.
    Miralles, Diego G.
    Cosh, Michael H.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (06): : 2516 - 2527
  • [27] Monitoring hydrological drought using long-term satellite-based precipitation data
    Lai, Chengguang
    Zhong, Ruida
    Wang, Zhaoli
    Wu, Xiaoqing
    Chen, Xiaohong
    Wang, Peng
    Lian, Yanqing
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 649 : 1198 - 1208
  • [28] Analysis of Long-Term Aerosol Optical Properties Combining AERONET Sunphotometer and Satellite-Based Observations in Hong Kong
    Yu, Xinyu
    Nichol, Janet
    Lee, Kwon Ho
    Li, Jing
    Wong, Man Sing
    [J]. REMOTE SENSING, 2022, 14 (20)
  • [29] Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for SMAP satellite
    Gao, Lun
    Sadeghi, Morteza
    Ebtehaj, Ardeshir
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [30] Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the Soil Moisture Analysis Rainfall Tool
    Chen, Fan
    Crow, Wade T.
    Holmes, Thomas R. H.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2012, 6