A note on Lee-Yang zeros in the negative half-plane

被引:4
|
作者
Lebowitz, Joel L. [1 ,2 ]
Scaramazza, Jasen A. [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
关键词
Lee-Yang zeros; virial expansion; negative real axis; positive expansion coefficients; inverse compressibility; negative half plane; monomer dimer; GRAND PARTITION-FUNCTION; HARD-SPHERES; FLUIDS; CONVERGENCE; EXPANSIONS; STATE;
D O I
10.1088/0953-8984/28/41/414004
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We obtain lower bounds on the inverse compressibility of systems whose Lee-Yang zeros of the grand-canonical partition function lie in the left half of the complex fugacity plane. This includes in particular systems whose zeros lie on the negative real axis such as the monomer-dimer system on a lattice. We also study the virial expansion of the pressure in powers of the density for such systems. We find no direct connection between the positivity of the virial coefficients and the negativity of the L-Y zeros, and provide examples of either one or both properties holding. An explicit calculation of the partition function of the monomer-dimer system on two rows shows that there are at most a finite number of negative virial coefficients in this case.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Lee-Yang zeros and phase transitions in nonequilibrium steady states
    Blythe, RA
    Evans, MR
    PHYSICAL REVIEW LETTERS, 2002, 89 (08) : 080601/1 - 080601/4
  • [22] THE GENERAL DISTRIBUTION OF LEE-YANG ZEROS IN COMPACT LATTICE QED
    BARBOUR, IM
    BURIONI, R
    SALINA, G
    PHYSICS LETTERS B, 1995, 341 (3-4) : 355 - 360
  • [23] LEE-YANG MEASURES
    SALMHOFER, M
    HELVETICA PHYSICA ACTA, 1994, 67 (03): : 257 - 288
  • [24] Lee-Yang zeros in lattice QCD for searching phase transition points
    Wakayama, M.
    Bornyakov, V. G.
    Boyda, D. L.
    Goy, V. A.
    Iida, H.
    Molochkov, A., V
    Nakamura, A.
    Zakharov, V., I
    PHYSICS LETTERS B, 2019, 793 : 227 - 233
  • [25] Lee-Yang zeros and quantum Fisher information matrix in a nonlinear system
    Tao, Hong
    Su, Yuguo
    Zhang, Xingyu
    Liu, Jing
    Wang, Xiaoguang
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [26] LEE-YANG ZEROS AND THE CHIRAL PHASE-TRANSITION IN COMPACT QED
    SALINA, G
    NUCLEAR PHYSICS B, 1995, : 547 - 549
  • [27] THE BEHAVIOR OF THE LEE-YANG ZEROS FOR SU(3) AND COMPACT U(1)
    BARBOUR, IM
    BELL, AJ
    KLEPFISH, EG
    BURIONI, R
    VLADIKAS, A
    SALINA, G
    NUCLEAR PHYSICS B, 1993, : 339 - 342
  • [28] Anomalous scaling and Lee-Yang zeros in self-organized criticality
    Cessac, B
    Meunier, JL
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036131
  • [29] Lee-Yang zeros and two-time spin correlation function
    Gnatenko, Kh. P.
    Kargol, A.
    Tkachuk, V. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 1095 - 1101
  • [30] LEE-YANG ZEROS AND LOGARITHMIC CORRECTIONS IN THE PHI(4)4 THEORY
    KENNA, R
    LANG, CB
    NUCLEAR PHYSICS B, 1993, : 697 - 700