Parallel Multiobjective Metaheuristics for Inferring Phylogenies on Multicore Clusters

被引:12
|
作者
Santander-Jimenez, Sergio [1 ]
Vega-Rodriguez, Miguel A. [1 ]
机构
[1] Univ Extremadura, Dept Comp & Commun Technol, Escuela Politecn, Caceres 10003, Spain
关键词
Parallel algorithms; hybrid systems; biology and genetics; performance evaluation of algorithms and systems; GENETIC ALGORITHM; COMPUTATION; SEQUENCES; INFERENCE; DATABASE; DESIGN; MODELS; TOOLS; TREE;
D O I
10.1109/TPDS.2014.2325828
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The development of efficient parallel algorithms based on mixed mode programming represents one of the most popular lines of research in current bioinformatics. By exploiting hardware resources at inter-node/intra-node level, we can address grand computational challenges which involve the optimization of multiple objective functions simultaneously. In this sense, the inference of evolutionary trees represents one of the most difficult NP-hard problems in the field. Tackling such a problem requires efficient parallel designs to take advantage of the characteristics of modern multicore clusters. In this paper, we aim to solve the phylogenetic inference problem by applying MPI/OpenMP schemes to two multiobjective metaheuristics: fast non-dominated sorting genetic algorithm and multiobjective firefly algorithm. In order to assess the performance achieved by these proposals under different system and problem sizes, we have conducted experiments on six real nucleotide data sets according to a statistical methodology. Our parallel and multiobjective metrics point out the relevance of combining hybrid programming and novel bioinspired designs with regard to other parallel and biological approaches from the literature.
引用
收藏
页码:1678 / 1692
页数:15
相关论文
共 50 条
  • [41] Asymptotic convergence of metaheuristics for multiobjective optimization problems
    Villalobos-Arias, Mario
    Coello Coello, Carlos A.
    Hernandez-Lerma, Onesimo
    SOFT COMPUTING, 2006, 10 (11) : 1001 - 1005
  • [42] Metaheuristics for the Multiobjective Surgery Admission Planning Problem
    Nyman, Jacob
    Ripon, Kazi Shah Nawaz
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1613 - 1620
  • [43] MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters
    Gonzalez-Dominguez, Jorge
    Martin, Maria J.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (05) : 1732 - 1737
  • [44] Multiobjective Metaheuristics for Traffic Grooming in Optical Networks
    Rubio-Largo, Alvaro
    Vega-Rodriguez, Miguel A.
    Gomez-Pulido, Juan A.
    Sanchez-Perez, Juan M.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (04) : 457 - 473
  • [45] The fast multipole method on parallel clusters, multicore processors, and graphics processing units
    Darve, Eric
    Cecka, Cris
    Takahashi, Toru
    COMPTES RENDUS MECANIQUE, 2011, 339 (2-3): : 185 - 193
  • [46] On the hardness of inferring phylogenies from triplet-dissimilarities
    Gronau, Ilan
    Moran, Shlomo
    THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) : 44 - 55
  • [47] A Hybrid Parallel Search Algorithm for Solving Combinatorial Optimization Problems on Multicore Clusters
    Sanz, Victoria
    De Giusti, Armando
    Naiouf, Marcelo
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2017, 2017, 10393 : 766 - 775
  • [48] A tool for detecting transient faults in execution of parallel scientific applications on multicore clusters
    Montezanti, Diego
    Rucci, Enzo
    Rexachs, Dolores
    Luque, Emilio
    Naiouf, Marcelo
    De Giusti, Armando
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2014, 14 (01): : 32 - 38
  • [49] Asymptotic convergence of metaheuristics for multiobjective optimization problems
    Mario Villalobos-Arias
    Carlos A. Coello Coello
    Onésimo Hernández-Lerma
    Soft Computing, 2006, 10 : 1001 - 1005
  • [50] Special issue on advances in metaheuristics for multiobjective optimization
    Alba, Enrique
    Talbi, El-Ghazali
    Nebro, Antonio J.
    JOURNAL OF HEURISTICS, 2008, 14 (04) : 311 - 312