Electrospun Methacrylated Gelatin/Poly(L-Lactic Acid) Nanofibrous Hydrogel Scaffolds for Potential Wound Dressing Application

被引:22
|
作者
Sun, Mingchao [1 ]
Chen, Shaojuan [1 ]
Ling, Peixue [2 ]
Ma, Jianwei [1 ]
Wu, Shaohua [1 ,2 ]
机构
[1] Qingdao Univ, Coll Text & Clothing, Qingdao 266071, Peoples R China
[2] Shandong Acad Pharmaceut Sci, Natl Local Joint Engn Lab Polysaccharide Drugs, Engn Lab Polysaccharide Drugs, Key Lab Biopharmaceut, Jinan 250101, Peoples R China
基金
中国博士后科学基金;
关键词
electrospinning; hydrogel; methacrylated gelatin; poly(L-lactic acid); wound dressing; SWELLING KINETICS; SUPERABSORBENT; CELLS; MATS;
D O I
10.3390/nano12010006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrospun nanofiber mats have attracted intense attention as advanced wound dressing materials. The objective of this study was to fabricate methacrylated gelatin (MeGel)/poly(L-lactic acid) (PLLA) hybrid nanofiber mats with an extracellular matrix (ECM) mimicking nanofibrous structure and hydrogel-like properties for potential use as wound dressing materials. MeGel was first synthesized via the methacryloyl substitution of gelatin (Gel), a series of MeGel and PLLA blends with various mass ratios were electrospun into nanofiber mats, and a UV crosslinking process was subsequently utilized to stabilize the MeGel components in the nanofibers. All the as-crosslinked nanofiber mats exhibited smooth and bead-free fiber morphologies. The MeGel-containing and crosslinked nanofiber mats presented significantly improved hydrophilic properties (water contact angle = 0 degrees; 100% wettability) compared to the pure PLLA nanofiber mats (~127 degrees). The swelling ratio of crosslinked nanofiber mats notably increased with the increase of MeGel (143.6 +/- 7.4% for PLLA mats vs. 875.0 +/- 17.1% for crosslinked 1:1 MeGel/PLLA mats vs. 1135.2 +/- 16.0% for crosslinked MeGel mats). The UV crosslinking process was demonstrated to significantly improve the structural stability and mechanical properties of MeGel/PLLA nanofiber mats. The Young's modulus and ultimate strength of the crosslinked nanofiber mats were demonstrated to obviously decrease when more MeGel was introduced in both dry and wet conditions. The biological tests showed that all the crosslinked nanofiber mats presented great biocompatibility, but the crosslinked nanofiber mats with more MeGel were able to notably promote the attachment, growth, and proliferation of human dermal fibroblasts. Overall, this study demonstrates that our MeGel/PLLA blend nanofiber mats are attractive candidates for wound dressing material research and application.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes
    Ning Cai
    Qin Dai
    Zelong Wang
    Xiaogang Luo
    Yanan Xue
    Faquan Yu
    Journal of Materials Science, 2015, 50 : 1435 - 1445
  • [32] Surface modification of electrospun poly-(L-lactic) acid scaffolds by reactive magnetron sputtering
    Bolbasov, E. N.
    Maryin, P. V.
    Stankevich, K. S.
    Kozelskaya, A. I.
    Shesterikov, E. V.
    Khodyrevskaya, Yu. I.
    Nasonova, M. V.
    Shishkova, D. K.
    Kudryavtseva, Yu. A.
    Anissimov, Y. G.
    Tverdokhlebov, S. I.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 162 : 43 - 51
  • [33] In vitro study on electrospun lecithin-based poly (L-lactic acid) scaffolds and their biocompatibility
    Xu, Zhonghua
    Liu, Peng
    Li, Hongyin
    Zhang, Mingkui
    Wu, Qingyu
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2020, 31 (17) : 2285 - 2298
  • [34] Toughening of electrospun poly(L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes
    Cai, Ning
    Dai, Qin
    Wang, Zelong
    Luo, Xiaogang
    Xue, Yanan
    Yu, Faquan
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (03) : 1435 - 1445
  • [35] Electrospun poly(L-lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering
    Chuenjitkuntaworn, Boontharika
    Supaphol, Pitt
    Pavasant, Prasit
    Damrongsri, Damrong
    POLYMER INTERNATIONAL, 2010, 59 (02) : 227 - 235
  • [36] Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering
    Shalumon, K. T.
    Deepthi, S.
    Anupama, M. S.
    Nair, S. V.
    Jayakumar, R.
    Chennazhi, K. P.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 72 : 1048 - 1055
  • [37] Electrospun Poly(ε-caprolactone)/Gelatin Nanofibrous Mat Containing Selenium as a Potential Wound Dressing Material: In Vitro and In Vivo Study
    Majid Salehi
    Keyvan Shahporzadeh
    Arian Ehterami
    Hodays Yeganehfard
    Heliya Ziaei
    Mohammad Moein Azizi
    Saeed Farzamfar
    Amirreza Tahersoltani
    Arash Goodarzi
    Jafar Ai
    Akbar Ahmadi
    Fibers and Polymers, 2020, 21 : 1713 - 1721
  • [38] Electrospun Poly(ε-caprolactone)/Gelatin Nanofibrous Mat Containing Selenium as a Potential Wound Dressing Material: In Vitro and In Vivo Study
    Salehi, Majid
    Shahporzadeh, Keyvan
    Ehterami, Arian
    Yeganehfard, Hodays
    Ziaei, Heliya
    Azizi, Mohammad Moein
    Farzamfar, Saeed
    Tahersoltani, Amirreza
    Goodarzi, Arash
    Ai, Jafar
    Ahmadi, Akbar
    FIBERS AND POLYMERS, 2020, 21 (08) : 1713 - 1721
  • [39] ECM Mimetic Electrospun Porous Poly (L-lactic acid) (PLLA) Scaffolds as Potential Substrates for Cardiac Tissue Engineering
    Muniyandi, Priyadharshni
    Palaninathan, Vivekanandan
    Veeranarayanan, Srivani
    Ukai, Tomofumi
    Maekawa, Toru
    Hanajiri, Tatsuro
    Mohamed, Mohamed Sheikh
    POLYMERS, 2020, 12 (02)
  • [40] Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing
    Ahlawat, Jyoti
    Kumar, Vinay
    Gopinath, P.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 103