Degree bounds for type-A weight rings and Gelfand-Tsetlin semigroups

被引:0
|
作者
Howard, Benjamin J. [2 ]
McAllister, Tyrrell B. [1 ]
机构
[1] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Weight ring; Weight variety; Cohen-Macaulay ring; Toric degeneration; Gelfand-Tsetlin pattern;
D O I
10.1007/s10801-010-0269-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A weight ring in type A is the coordinate ring of the GIT quotient of the variety of flags in C-n modulo a twisted action of the maximal torus in SL(n,C). We show that any weight ring in type A is generated by elements of degree strictly less than the Krull dimension, which is at worst O(n (2)). On the other hand, we show that the associated semigroup of Gelfand-Tsetlin patterns can have an essential generator of degree exponential in n.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 7 条
  • [1] Degree bounds for type-A weight rings and Gelfand–Tsetlin semigroups
    Benjamin J. Howard
    Tyrrell B. McAllister
    Journal of Algebraic Combinatorics, 2011, 34 : 237 - 249
  • [2] Gelfand-Tsetlin algebras and cohomology rings of Laumon spaces
    Feigin, Boris
    Finkelberg, Michael
    Frenkel, Igor
    Rybnikov, Leonid
    SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (02): : 337 - 361
  • [3] Weight bases of Gelfand-Tsetlin type for representations of classical Lie algebras
    Molev, AI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 4143 - 4158
  • [4] Combinatorial Constructions of Weight Bases: The Gelfand-Tsetlin Basis
    Hersh, Patricia
    Lenart, Cristian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [5] Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules
    Futorny, Vyacheslav
    Grantcharov, Dimitar
    Ramirez, Luis Enrique
    Zadunaisky, Pablo
    JOURNAL OF ALGEBRA, 2020, 556 : 412 - 436
  • [6] THE GELFAND-TSETLIN BASIS FOR IRREDUCIBLE UNITARIZABLE REPRESENTATIONS U(P, Q) WITH A LEADING WEIGHT
    MOLEV, AI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (03) : 236 - 238
  • [7] Gelfand-Tsetlin-type weight bases for all special linear Lie algebra representations corresponding to skew Schur functions
    Donnelly, Robert G.
    Dunkum, Molly W.
    ADVANCES IN APPLIED MATHEMATICS, 2022, 139