Fast thermal nanoimprint lithography by a stamp with integrated heater

被引:22
|
作者
Tormen, Massimo [1 ]
Malureanu, Radu [1 ]
Pedersen, Rasmus Haugstrup [2 ]
Lorenzen, Lasse [2 ]
Rasmussen, Kristian Hagsted [2 ]
Luscher, Christopher James [2 ]
Kristensen, Anders [2 ]
Hansen, Ole [2 ,3 ]
机构
[1] Natl Inst Phys Matter, TASC Lab, I-34012 Basovizza Trieste, Italy
[2] Tech Univ Denmark, MIC Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, CINF, DK-2800 Lyngby, Denmark
关键词
nanoimprint lithography; stamps; integrated heater; Joule effect;
D O I
10.1016/j.mee.2008.01.065
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose fast nanoimprinting lithography (NIL) process based on the use of stamps with integrated heater. The latter consists of heavily ion implantation n-type doped silicon layer buried below the microstructured surface of the stamp. The stamp is heated by Joule effect, by 50 mu s 25 Hz repetition rate current pulses flowing in the conductive layer. Using this approach we have reproducibly imprinted areas of similar to 2 cm(2) within 16 s with residual layers in the range of few tens of nm. This result paves the way for processes in the sub-1 s timescale over large area surfaces. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1229 / 1232
页数:4
相关论文
共 50 条
  • [41] Effect of stamp design on residual layer thickness and contact pressure in UV nanoimprint lithography
    Yin, Minqi
    Sun, Hongwen
    Wang, Haibin
    MICRO & NANO LETTERS, 2018, 13 (06): : 887 - 891
  • [42] The effect of substrate deformation in UV-nanoimprint lithography using a large area stamp
    Kim, Ki-don
    Sim, Young-suk
    Jeong, Jun-ho
    Sohn, Hyunkee
    Lee, Eung-sug
    Lee, Sang-chan
    Fang, Lingmei
    NANOSCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2007, 121-123 : 649 - 652
  • [43] Stamp design effect on 100 nm feature size for 8 inch NanoImprint lithography
    Landis, S.
    Chaix, N.
    Gourgon, C.
    Perret, C.
    Leveder, T.
    NANOTECHNOLOGY, 2006, 17 (10) : 2701 - 2709
  • [44] Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp
    Dutta, R. K.
    van Kan, J. A.
    Bettiol, A. A.
    Watt, F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 260 (01): : 464 - 467
  • [45] Legitimate domain of a Newtonian behavior for thermal nanoimprint lithography
    Teyssedre, H.
    Gilormini, P.
    Landis, S.
    Regnier, G.
    MICROELECTRONIC ENGINEERING, 2013, 110 : 215 - 218
  • [46] Soft thermal nanoimprint lithography using a nanocomposite mold
    Bhingardive, Viraj
    Menahem, Liran
    Schvartzman, Mark
    NANO RESEARCH, 2018, 11 (05) : 2705 - 2714
  • [47] Comparison of monomer and polymer resists in thermal nanoimprint lithography
    Zelsmann, M.
    Perez Toralla, K.
    De Girolamo, J.
    Boutry, D.
    Gourgon, C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (06): : 2430 - 2433
  • [48] Improvements of defects by patterning using thermal nanoimprint lithography
    Park, Hyung Seok
    Shin, Ho Hyun
    Sung, Man Young
    Choi, Woo Beom
    Choi, Seung Woo
    Park, Sang Yong
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4A): : 1808 - 1814
  • [49] Influence of thermal properties of polymers on NanoImprint Lithography performance
    Perret, C
    Gourgon, C
    Micouin, G
    Grolier, JPE
    MICROPROCESSES AND NANOTECHNOLOGY 2001, DIGEST OF PAPERS, 2001, : 98 - 99
  • [50] Study on vibration-assisted thermal nanoimprint lithography
    Chen, Si
    Gu, Yan
    Lin, Jieqiong
    Yi, Allen
    Yi, Zhengfa
    Li, Jingpeng
    Yan, Jiaxuan
    APPLIED NANOSCIENCE, 2020, 10 (08) : 3315 - 3324