The circle method and bounds for L-functions - IV: Subconvexity for twists of GL(3) L-functions

被引:35
|
作者
Munshi, Ritabrata [1 ]
机构
[1] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
关键词
D O I
10.4007/annals.2015.182.2.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be an SL(3, Z) Hecke-Maass cusp form satisfying the Ramanujan conjecture and the Selberg-Ramanujan conjecture, and let chi be a primitive Dirichlet character modulo M, which we assume to be prime for simplicity. We will prove that there is a computable absolute constant delta > 0 such that L(1/2, pi circle times chi) <<(pi) M3/4-5
引用
收藏
页码:617 / 672
页数:56
相关论文
共 50 条
  • [21] Strong Subconvexity for Self-Dual GL(3) L-Functions
    Lin, Yongxiao
    Nunes, Ramon
    Qi, Zhi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (13) : 11453 - 11470
  • [22] A NONVANISHING RESULT FOR TWISTS OF L-FUNCTIONS OF GL(N)
    BARTHEL, L
    RAMAKRISHNAN, D
    DUKE MATHEMATICAL JOURNAL, 1994, 74 (03) : 681 - 700
  • [23] Nonvanishing twists of GL(2) automorphic L-functions
    Brubaker, B
    Bucur, A
    Chinta, G
    Frechette, S
    Hoffstein, J
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (78) : 4211 - 4239
  • [24] Cubic twists of GL(2) automorphic L-functions
    Brubaker, B
    Friedberg, S
    Hoffstein, J
    INVENTIONES MATHEMATICAE, 2005, 160 (01) : 31 - 58
  • [25] Cubic twists of GL(2) automorphic L-functions
    Ben Brubaker
    Solomon Friedberg
    Jeffrey Hoffstein
    Inventiones mathematicae, 2005, 160 : 31 - 58
  • [26] Subconvexity for GL(3) x GL(2) L-functions in t-aspect
    Munshi, Ritabrata
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (05) : 1543 - 1566
  • [27] The subconvexity problem for Artin L-functions
    Duke, W
    Friedlander, JB
    Iwaniec, H
    INVENTIONES MATHEMATICAE, 2002, 149 (03) : 489 - 577
  • [28] A subconvexity bound for Hecke L-functions
    Fouvry, E
    Iwaniec, H
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (05): : 669 - 683
  • [29] Subconvexity for L-functions of non-spherical cusp forms on GL(3)
    Blomer, Valentin
    Buttcane, Jack
    ACTA ARITHMETICA, 2020, 192 (01) : 31 - 62
  • [30] Shifted convolution sums and subconvexity bounds for automorphic L-functions
    Blomer, V
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (73) : 3905 - 3926